REG-VAR-2425-ASM-SET 1-MATH

Suggested solutions

Multiple Choice Questions

- 1. C
- 2. D
- 3. B
- 4. B
- 5. D

- 6. A
- 7. A
- 8. D
- 9. A
- 10. B

- 11. A
- 12. D
- 13. D
- 14. C
- 15. C

- 16. D
- 17. D
- 18. D
- 19. B
- 20. C

- 21. C
- 22. B
- 23. B
- 24. B
- 25. C

- 26. C
- 27. D
- 28. C
- 29. A
- 30. A

- C 1.
 - Let x + 2y = k(2x y), where k is a non-zero constant.

$$8 + 2(6) = k[2(8) - 6]$$

$$k = 2$$

$$x + 2y = 2(2x - y)$$

$$4y = 3x$$

$$y = \frac{3}{4}x$$

- D 2.
 - Let $y = k(x + 2)^2$, where k is a non-zero constant.

$$216 = k(4+2)^2$$

$$k = 6$$

$$y = 6(x+2)^2$$

$$y = 6(x+2)^{2}$$

$$\frac{y}{(x+2)^{2}} = 6$$

- В 3.
 - Let $y = k\sqrt{x}$, where k is a non-zero constant.

$$10 = k\sqrt{4}$$

$$k = 5$$

When
$$y = 5$$
,

$$5 = 5\sqrt{x}$$

$$\sqrt{x} = 1$$

$$x = 1$$

4. B

Let $y = k\sqrt{x}$, where k is a non-zero constant.

$$18 = k\sqrt{81}$$

$$k = 2$$

$$2 = 2\sqrt{p} \quad \text{and} \quad q = 2\sqrt{121}$$

$$p = 1$$
 = 22

5. D

Let $y = \frac{k}{x^2}$, where k is a non-zero constant.

$$\frac{1}{108} = \frac{k}{12^2}$$
$$k = \frac{4}{2}$$

When x = 6,

$$y = \frac{4}{3(6)^2} = \frac{1}{27}$$

6. A

Let $y = \frac{k}{(x+1)^2}$, where k is a non-zero constant.

$$1 = \frac{k}{(1+1)^2}$$

$$k = 4$$

When x = 3,

$$y = \frac{4}{(3+1)^2}$$
$$= \frac{1}{4}$$

7. A

Let $y + 1 = \frac{k}{x^2}$, where k is a non-zero constant.

$$224 + 1 = \frac{k}{2^2}$$

$$k = 900$$

When y = 35,

$$35 + 1 = \frac{900}{x^2}$$

$$x^2 = 25$$

$$x = 5$$
 or -5 (rejected)

8.

Let $x = \frac{k}{v^2}$, where k is a non-zero constant.

$$1 = \frac{k}{3^2}$$

$$k = 9$$

$$3 = \frac{9}{a^2}$$

$$3 = \frac{9}{a^2}$$
 and $b = \frac{9}{2^2}$

$$a^2 = 3$$

$$b = \frac{9}{4}$$

$$a = \sqrt{3}$$
 or $-\sqrt{3}$ (rejected)

9.

Let $y = \frac{k}{x+2}$, where k is a non-zero constant.

$$3 = \frac{k}{4+2}$$

$$k = 18$$

We have $y = \frac{18}{x+2}$.

10.

Let $y = \frac{k}{x-1}$, where k is a non-zero constant.

$$25 = \frac{k}{2-1}$$

$$k = 25$$

When y = 5,

$$5 = \frac{25}{x - 1}$$

$$x = 6$$

11. A

Let $y = \frac{k}{\sqrt[3]{x}}$, where k is a non-zero constant.

$$\frac{7}{3} = \frac{k}{\sqrt[3]{216}}$$

$$k = 14$$

We have $y = \frac{14}{\sqrt[3]{x}}$.

Let $y = \frac{k}{\sqrt{x}}$, where k is a non-zero constant.

$$\frac{9}{16} = \frac{k}{\sqrt{4}}$$
$$k = \frac{9}{8}$$

We have $y = \frac{9}{8\sqrt{x}}$.

D 13.

- A. \checkmark . B. \checkmark . $y = \left(\frac{1}{4}\right)x$ C. \checkmark .
- D. **X**.

Let $y = kx^2$, where k is a non-zero constant.

$$x^2 = \frac{y}{k}$$
$$x = \left(\frac{1}{\sqrt{k}}\right)\sqrt{y}$$

x varies directly as \sqrt{y} .

15. **C**

Let $a = \frac{k}{b}$, where k is a non-zero constant.

A. \checkmark . Since ab = k, the statement is true when k = 1.

B. \checkmark . The statement is true when k = 2.

C. **X**.

$$2a - 5b = 0$$
$$2\left(\frac{k}{b}\right) = 5b$$
$$2k = 5b^{2}$$
$$b^{2} = \frac{2k}{5}$$

Note that b is not a constant. b^2 cannot equal the constant $\frac{2k}{5}$.

D. 🗸.

$$3(ab-1) = 1$$
$$3(k-1) = 1$$
$$k = \frac{4}{3}$$

The statement is true when $k = \frac{4}{3}$.

16. D

Let $x = k_1 y^2$ and $y = \frac{k_2}{z^3}$, where k_1 and k_2 are non-zero constants.

$$x = k_1 \left(\frac{k_2}{z^3}\right)^2$$
$$= \frac{k_1 k_2^2}{z^6}$$

Note that $k_1 k_2^2$ is a constant.

We have x varies directly as z^6 .

17. D

Let $y = k\sqrt{x}$, where k is a non-zero constant.

The graph of $y = k\sqrt{x}$ has the following properties:

- It is a curve, not a straight line.
- It passes through the origin (0, 0).

The answer is D.

18. D

Let 5x - y = k(2x + 3y), where k is a non-zero constant.

$$5x - y = 2kx + 3ky$$
$$x(5 - 2k) = (3k + 1)y$$
$$\frac{x}{y} = \frac{3k + 1}{5 - 2k}$$

Thus, $\frac{x}{y}$ is always a constant (except when k = 2.5).

19. B

Let $a = kb^2$, where k is a non-zero constant.

Percentage change

$$= \frac{k(0.75b)^2 - kb^2}{kb^2} \times 100\%$$
$$= -43\frac{3}{4}\%$$

20. **C**

Let $y = \frac{k}{x^2}$, where k is a non-zero constant.

$$\frac{y_2}{y_1} = \frac{1}{(1.25)^2}$$
$$= 0.64$$

y is decreased by 36%.

21. **C**

Let $y = \frac{k}{\sqrt{x}}$, where k is a non-zero constant.

Percentage change

$$= \frac{\frac{k}{\sqrt{0.8x}} - \frac{k}{\sqrt{x}}}{\frac{k}{\sqrt{x}}} \times 100\%$$

$$\approx 11.8\%$$

22. B

Let $a = \frac{k}{b}$, where k is a non-zero constant.

Percentage change

$$= \frac{\frac{k}{0.9b} - \frac{k}{b}}{\frac{k}{b}} \times 100\%$$
$$= 11\frac{1}{0}\%$$

Let P = k(x - 1), where k is a non-zero constant.

$$360 = k(9-1)$$

$$k = 45$$

Required profit = 45(4-1)

В 24.

Surface area = $4\pi r^2$

$$=(4\pi)r^2$$

The surface area varies directly as the square of r.

C 25.

Let r be the radius of the sphere. We have $V = \frac{4}{3}\pi r^3$ and $A = 4\pi r^2$.

$$V^{2} = \frac{16}{9}\pi^{2}r^{6}$$

$$= \frac{16}{9}\pi^{2}\left(\frac{A}{4\pi}\right)^{3}$$

$$= \frac{16}{9\pi}A^{3}$$
Thus, $V^{2} \propto A^{3}$.

C 26.

x	1	3	4
x^2	1	9	16
у	2	$\frac{2}{9}$	$\frac{1}{8}$

Note that $x^2y = 2$. We have $y = \frac{2}{x^2}$ and $y \propto \frac{1}{x^2}$.

27. D

х	6	8	12	24
x^2	36	64	144	576
у	16	9	4	1

Note that $x^2y = 576$. We have $y = \frac{576}{x^2}$ and $y \propto \frac{1}{x^2}$.

28. **C**

x	2	4	6
x^2	4	16	36
у	6	24	54

Note that
$$\frac{y}{x^2} = \frac{3}{2}$$
.
We have $y = \frac{3x^2}{2}$ and $y \propto x^2$.

29. A

The trend goes upwards from left to right.

So, y increases when x increases.

y remains constant as x and y varies directly as z.

We have $x \uparrow \Rightarrow y$ remains unchanged $\Rightarrow z$ remains unchanged