

$$\begin{aligned}
 1. \quad & \frac{\log_{32} y - 2}{x - \frac{1}{2}} = \frac{2 - 0}{\frac{1}{2} + 2} & 1M \\
 & \log_{32} y = \frac{4x + 8}{5} \\
 & y = 32^{\frac{4x+8}{5}} & 1M \\
 & y = 2^8 \cdot 2^{4x} \\
 & = 256 \cdot 16^x & 1A
 \end{aligned}$$

$$\begin{aligned}
 2. \quad & \frac{\log_{16} y - 1}{x - 0} = \frac{0 - 1}{-4 - 0} & 1M \\
 & \log_{16} y = \frac{x}{4} + 1 \\
 & y = 16^{\frac{x}{4} + 1} & 1M \\
 & = 2^{x+4} & 1A
 \end{aligned}$$

$$\begin{aligned}
 3. \quad & \log_4 y = \frac{-18 - 0}{-2 - \frac{1}{4}} \left(\log_2 x - \frac{1}{4} \right) & 1M \\
 & \log_4 y = 8 \log_2 x - 2 \\
 & \frac{\log y}{2 \log 2} = 8 \times \frac{\log x}{\log 2} - 2 & 1M \\
 & \log y = 16 \log x - 4 \log 2 \\
 & \log y = \log \frac{x^{16}}{2^4} \\
 & y = \frac{x^{16}}{16} & 1A
 \end{aligned}$$

4. We have $\alpha + \beta = p$ and $\alpha\beta = p - 2$.

$$\begin{aligned}
 & \log_4(\alpha + \beta) = \log_2 \alpha + \log_2 \beta \\
 & \frac{\log(\alpha + \beta)}{2 \log 2} = \frac{\log \alpha \beta}{\log 2} & 1M \\
 & \log p = 2 \log(p - 2) \\
 & p = (p - 2)^2 \\
 & 0 = p^2 - 5p + 4 \\
 & p = 4 \quad \text{or} \quad 1 \quad (\text{rejected}) & 1A
 \end{aligned}$$

$$\begin{aligned}
 5. \quad & \text{Slope} = \frac{-1}{3} \\
 & \log_2 y = -\frac{1}{3} \log_2 x + 1 & 1M \\
 & y = 2^{-\frac{1}{3} \log_2 x + 1} \\
 & y = 2x^{-\frac{1}{3}}
 \end{aligned}$$

Thus, $a = 2$ and $b = -\frac{1}{3}$.

1A+1A

6. (a) Slope of the graph $= \frac{12 - 6}{3 - 0} = 2$

$$\log_2 y - 6 = 2(x - 0)$$

1M

$$\log_2 y = 2x + 6$$

1M

$$y = 2^{2x+6}$$

$$y = 2^6 \cdot 2^{2x}$$

$$= 64 \cdot 4^x$$

Thus, $a = 64$ and $b = 4$.

1A+1A

(b) $64(4^t) - 64(4^{t-1}) = 786432$

1M

$$4^t(1 - 4^{-1}) = 12288$$

$$4^t = 16384$$

$$t \log 4 = \log 16384$$

1M

$$t = 7$$

1A

7. We have

$$\begin{cases} 0 = m^2 - n \\ -12 = m - n \end{cases}$$

1M

$$0 + 12 = m^2 - m$$

1M

$$0 = m^2 - m - 12$$

$$m = 4 \quad \text{or} \quad -3 \quad (\text{rejected})$$

When $m = 4$, $n = m + 12 = 16$.

1A

$$4^x - 16 > 2021$$

$$4^x > 2037$$

$$x \log 4 > \log 2037$$

1M

$$x > 5.50$$

1A

8. G passes through $(-12, 0)$ and $(0, 1)$.

$$\begin{cases} 0 = a + \log_b(-12 + 16) \\ 1 = a + \log_b 16 \end{cases}$$

1M

$$1 - 0 = \log_b 16 - \log_b 4$$

1M

$$1 = \log_b 4$$

$$b = 4$$

1A

When $b = 4$, $a = 1 - \log_4 16 = -1$.

$$\begin{aligned}y &= -1 + \log_4(x + 16) \\4^{y+1} &= x + 16 \\x &= 4^{y+1} - 16\end{aligned}\quad \text{1A}$$

9. Substitute (0, 1) and (1, 6),

$$\begin{cases} 1 = m - 2n \\ 6 = mn - 2n \end{cases}$$

$$6 = (2n + 1)n - 2n \quad \text{1M}$$

$$0 = 2n^2 - n - 6$$

$$n = 2 \quad \text{or} \quad -\frac{3}{2} \quad (\text{rejected}) \quad \text{1A}$$

When $n = 2$, $m = 2(2) + 1 = 5$.

$$y = 5 \times 2^x - 4$$

$$2^x = \frac{y+4}{5}$$

$$x = \log_2 \frac{y+4}{5} \quad \text{1A}$$

10. (a) $6 = ka^0$

$$k = 6 \quad \text{1A}$$

$$54 = 6 \times a^{-2}$$

$$a^2 = \frac{1}{9}$$

$$a = \frac{1}{3} \quad \text{1A}$$

$$(b) \quad f(x_1) = \frac{3}{f(x_2)}$$

$$6 \times \frac{1}{3^{x_1}} = \frac{3}{6 \times \frac{1}{3^{x_2}}} \quad \text{1M}$$

$$3^{x_1+x_2} = 12$$

$$(x_1 + x_2) \log 3 = \log 12 \quad \text{1M}$$

$$x_1 + x_2 \approx 2.26 \quad \text{1A}$$

11. B

Assign reasonable values to the intercepts.

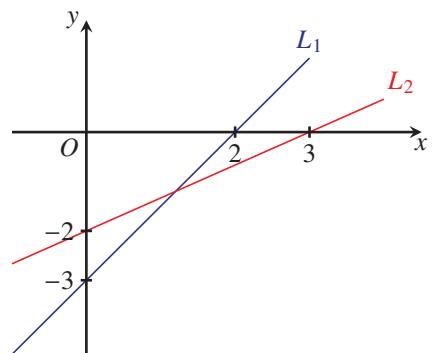
Use the points $(0, -3)$ and $(2, 0)$,
we have $a = -3$ and $b = 6$.

Use the points $(0, -2)$ and $(3, 0)$,
we have $c = -\frac{2}{3}$ and $d = 2$.

I. \times .

II. \checkmark .

III. \times .



12. C

$$\text{Slope} = \frac{b}{a} > 0$$

$$y\text{-intercept} = -\frac{c}{b} > 0$$

The answer is C.

13. A

The equation of L_2 is in the form $3x + 4y + k = 0$, where k is a constant.

y -intercept of L_1 is 2.

$$3(0) + 4(2) + k = 0$$

$$k = -8$$

The equation of L_2 is $3x + 4y - 8 = 0$.

14. D

$$\text{Slope of } OB = \frac{8 - 0}{20 - 0} = \frac{2}{5}$$

$$\text{Slope of } AP = -\frac{5}{2}$$

Required equation is

$$\frac{y - 7}{x - 3} = -\frac{5}{2}$$

$$5x + 2y - 29 = 0$$

15. D

$$(-6) + 3y - 6 = 0$$

$$y = 4$$

The coordinates of the intersection are $(-6, 4)$.

y -intercept of L_1 is 2.

Suppose the y -intercept of L_2 is k .

$$\frac{k-4}{0+6} \times \frac{-1}{3} = -1$$

$$k = 22$$

$$\begin{aligned}\text{Required area} &= \frac{1}{2} \times (22 - 2) \times 6 \\ &= 60\end{aligned}$$

16. B

Assign suitable values to the intercepts.

L_1 :

Use the points $(1, 0)$ and $(0, -1.5)$.

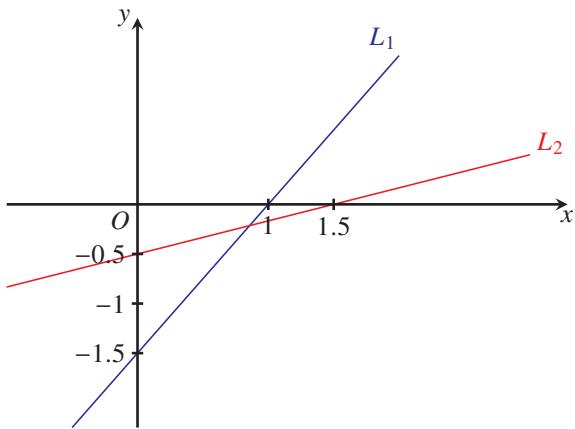
We have $p = -2$ and $q = 3$.

L_2 :

Use the points $(1.5, 0)$ and $(0, -0.5)$.

We have $r = -\frac{2}{3}$ and $s = -1$.

The result follows.



17. D

Equation of L is in the form $x - 2y + k = 0$.

Put $(0, 4)$ into $x - 2y + k = 0$.

$$0 - 2(4) + k = 0$$

$$k = 8$$

Required equation is $x - 2y + 8 = 0$.

18. C

Assign suitable values to the intercepts.

(0, 2)

$$0 - b^2(2) + b = 0$$

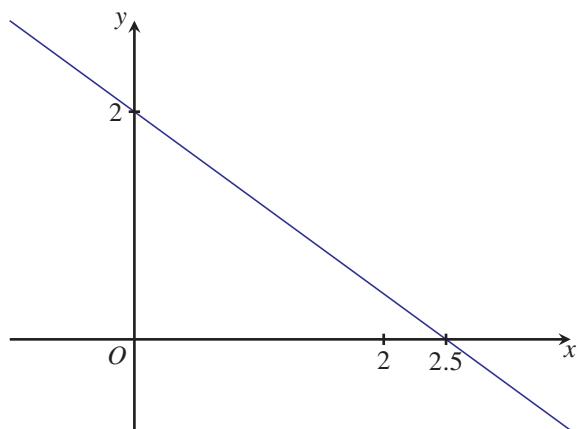
$$b = 0.5 \quad \text{or} \quad 0 \quad (\text{rejected})$$

(2.5, 0)

$$2.5a - 0 + 0.5 = 0$$

$$a = -0.2$$

Only statements II and III are true.



19. C

Assign suitable values to the intercepts.

Use the points (0, -1) and (1, 0),

we have $p = -5$ and $q = 5$.

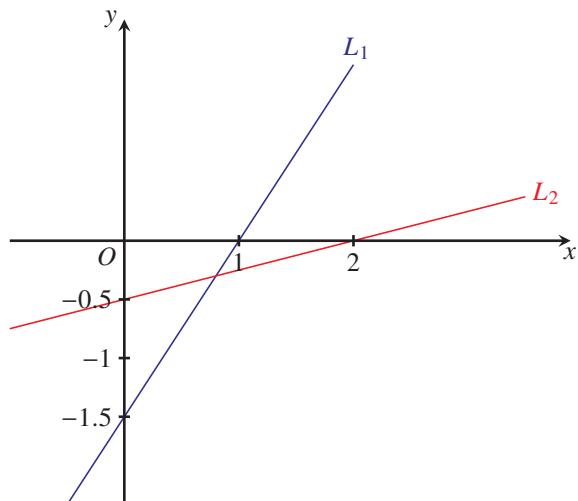
Use the points (0, -1.5) and (2, 0),

we have $r = -1.5$ and $s = -3$.

I. ✓.

II. ✗.

III. ✓.



20. A

Assign reasonable values to the intercepts.

Use the points (-2, 0) and (0, 2),

we have $a = -0.5$ and $b = 0.5$.

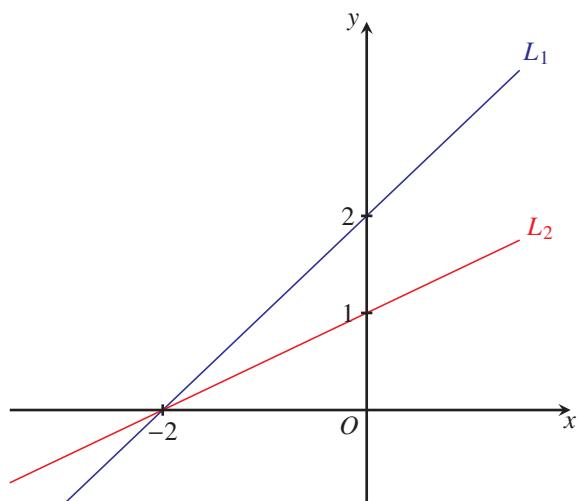
Use the points (-2, 0) and (0, 1),

we have $c = -0.5$ and $d = 1$.

I. ✓.

II. ✓.

III. ✗.



21. D

I. ✓. Slope of $L_1 = -\frac{1}{A} < 0$. So, $A > 0$.

II. ✓. Slope of $L_2 = -\frac{1}{C}$.

$$\left(\frac{-1}{A}\right)\left(\frac{-1}{C}\right) = -1$$

$$AC = -1$$

III. ✓. x -intercept of $L_1 = B$ and x -intercept of $L_2 = D$.

Thus, $B > D$.

22. A

Assign reasonable values to the intercepts.

Use the points $(1, 0)$ and $(0, 2)$,

we have $a = -1.5$ and $b = 3$.

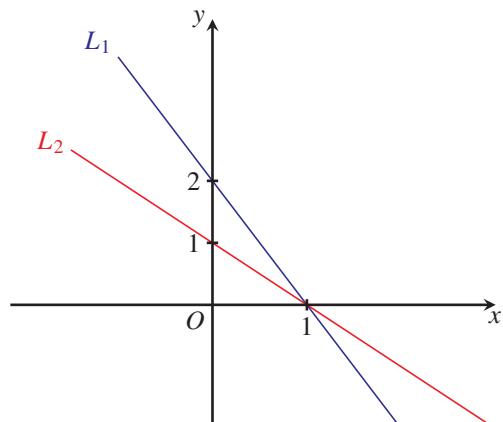
Use the points $(1, 0)$ and $(0, 1)$,

we have $c = -3$ and $d = -3$.

I. ✓.

II. ✓.

III. ✗.



23. D

Assign reasonable values to the intercepts.

L₁

Use the points $(0, 1)$ and $(1.5, 0)$,

we have $a = -\frac{2}{3}$ and $b = -1$.

L₂

Use the points $(0, 1)$ and $(0.5, 0)$,

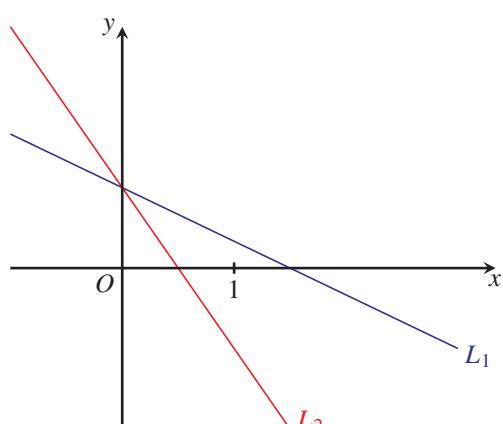
we have $d = -2$ and $e = -1$.

I. ✗.

II. ✓.

III. ✓.

IV. ✓.



24. D

$$h(0) + k(-8) + 24 = 0 \quad \text{and} \quad \left(-\frac{h}{k}\right) \times \left(\frac{3}{4}\right) = -1$$

$$k = 3 \quad h = \frac{4k}{3}$$

$$= 4$$

$$3x - 4(0) - 15(4) = 0$$

$$x = 20$$

The x -intercept of L_2 is 20.

25. A

Assign reasonable values to the intercepts. Note that the y -intercept of L_2 is $\frac{1}{3}$.

Use the points $(-1, 0)$ and $(0, 1)$,

we have $a = -1$ and $b = 1$.

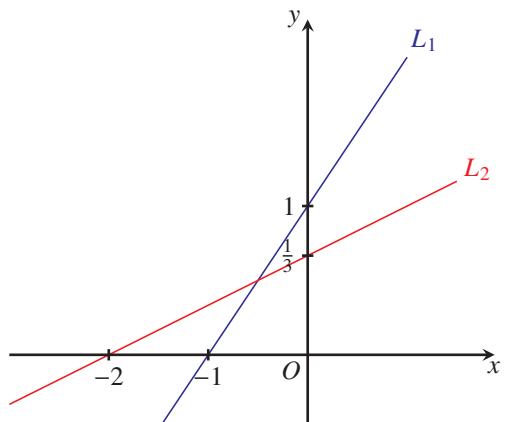
Use the point $(-2, 0)$,

we have $c = -0.5$.

I. ✓.

II. ✓.

III. ✗.



26. D

y -intercept of L_2 is 3.

$$k(0) - h(3) + 6 = 0$$

$$h = 2$$

L_1 and L_2 are perpendicular to each other.

$$\frac{k}{2} \times \frac{-2}{3} = -1$$

$$k = 3$$

The x -intercepts of L_1 and L_2 are -2 and $\frac{9}{2}$ respectively.

$$\text{Required area} = \frac{\left(\frac{9}{2} + 2\right)(3)}{2}$$

$$= \frac{39}{4}$$

27. B

Assign suitable values to the intercepts.

L_1 :

$$(1, 0) \rightarrow b = 1$$

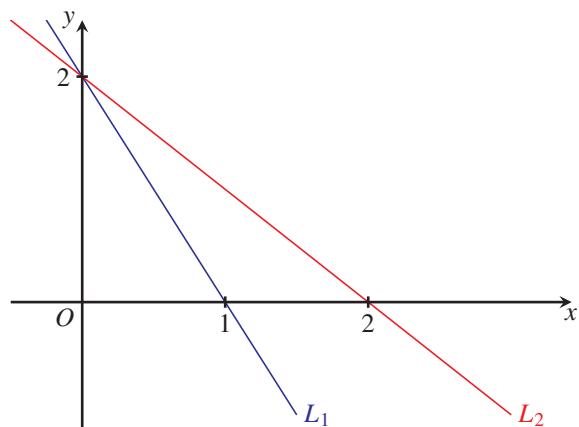
$$(0, 2) \rightarrow a = \frac{1}{2}$$

L_2 :

$$(2, 0) \rightarrow d = 2$$

$$(0, 2) \rightarrow c = 1$$

Only statement III is true.



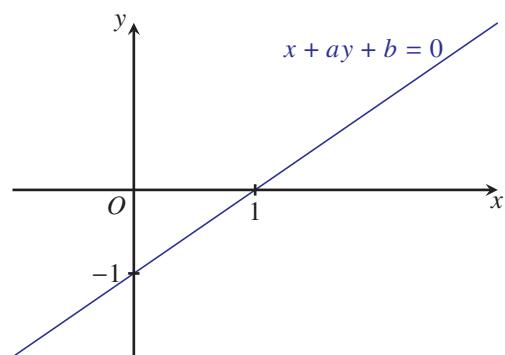
28. D

Assign reasonable values to the intercepts.

Use the points $(1, 0)$ and $(0, -1)$,

we have $a = -1$ and $b = -1$.

Thus, $a < 0$ and $b < 0$.



29. B

Assign reasonable values to the intercepts.

Use the points $(2, 0)$ and $(0, 2)$,

we have $a = 1$ and $b = 2$.

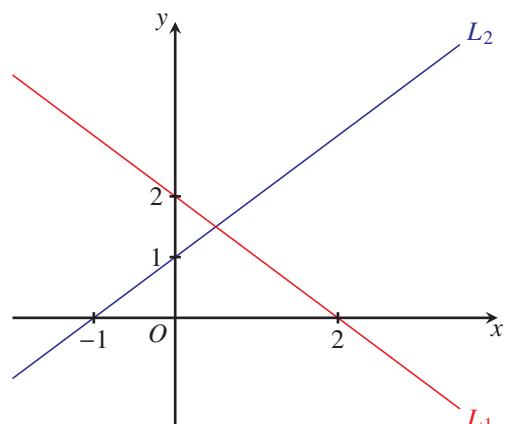
Use the points $(-1, 0)$ and $(0, 1)$,

we have $c = -1$ and $d = 1$.

I. ✓.

II. ✗.

III. ✓.



30. A

Required equation is $2x - 3y + k = 0$, where k is a constant.

$$2(1) - 3(-3) + k = 0$$

$$k = -11$$

Required equation is $2x - 3y - 11 = 0$.

31. C

Note that $\triangle AOB$ is an isosceles triangle.

Slope of $L_2 = -(\text{slope of } L_1)$

$$\begin{aligned} &= -\left(-\frac{a}{b}\right) \\ &= \frac{a}{b} \end{aligned}$$

32. D

Two lines are parallel.

$$\begin{aligned} \frac{-2}{3} &= \frac{-6}{k} \\ k &= 9 \end{aligned}$$

33. C

L_1 passes through $(-3, 0)$.

$$-3a - 0 + 2b = 0$$

$$-3a + 2b = 0$$

The slopes of L_1 and L_2 are equal.

$$\begin{aligned} \frac{a}{b+1} &= -2 \\ a + 2b &= -2 \end{aligned}$$

Solving, we have $a = -\frac{1}{2}$ and $b = -\frac{3}{4}$.

34. D

Assign reasonable values to the intercepts.

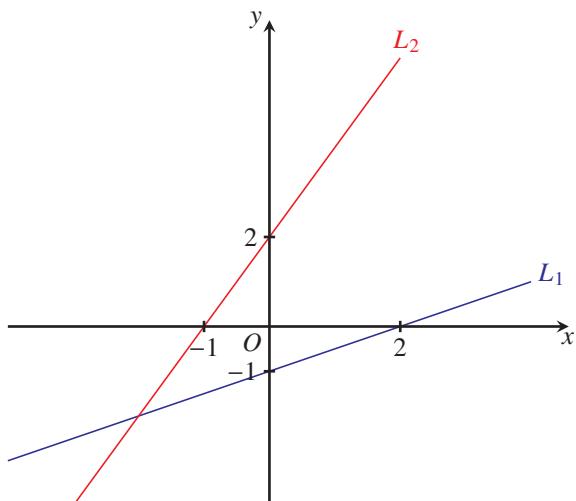
Use the points $(0, -1)$ and $(2, 0)$,
we have $a = 4$ and $b = 4$.

Use the points $(-1, 0)$ and $(0, 2)$,
we have $c = -2$ and $d = -2$.

I. ✓.

II. ✓.

III. ✓.



35. B

The straight lines are parallel.

$$-\frac{5}{2} = -\frac{10}{-a}$$
$$a = -4$$

36. D

Assign reasonable values to the intercepts.

Use the points $(1, 0)$ and $(0, 2)$,

we have $a = 0.5$ and $b = 1$.

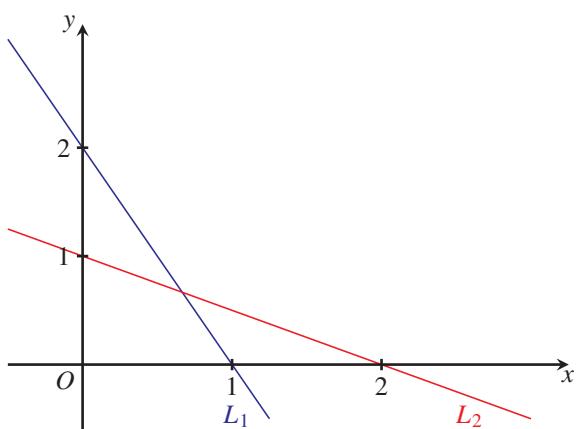
Use the points $(2, 0)$ and $(0, 1)$,

we have $c = 2$ and $d = 2$.

I. ✗.

II. ✓.

III. ✓.



37. D

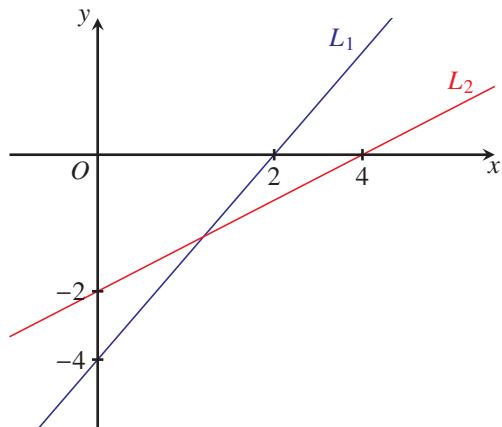
The x -intercepts and y -intercepts of L_2 are 4 and -2 respectively. Assign reasonable values to the intercepts.

Use the points $(2, 0)$ and $(0, -4)$,
we have $a = -2$ and $b = 1$.

I. \times .

II. \checkmark .

III. \checkmark .



38. A

Solve $\begin{cases} 3x + 4y = 22 \\ 4x - y = -15 \end{cases}$, we have $x = -2$ and $y = 7$.

Required equation is in the form $3x - 5y + k = 0$, where k is a constant.

$$3(-2) - 5(7) + k = 0$$

$$k = 41$$

Required equation is $3x - 5y + 41 = 0$.

39. D

Assign reasonable values to the intercepts.

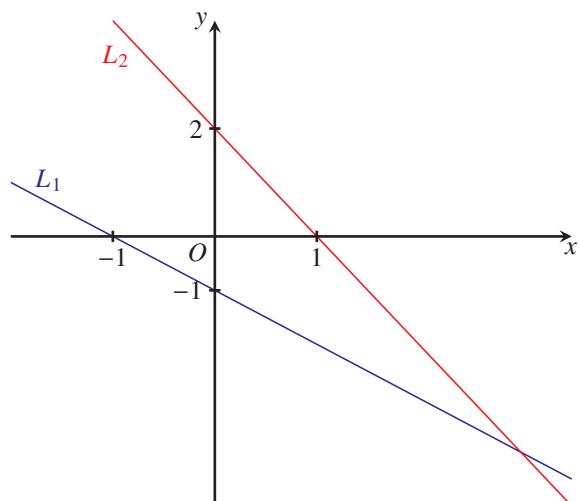
Use the points $(-1, 0)$ and $(0, -1)$,
we have $r = 1$ and $s = -1$.

Use the points $(0, 2)$ and $(1, 0)$,
we have $m = 0.5$ and $n = 1$.

I. \times .

II. \checkmark .

III. \checkmark .



40. C

Assign reasonable values to the intercepts.

L_1

$$(0, -1) \rightarrow b = 3$$

$$(-1, 0) \rightarrow a = -3$$

L_2

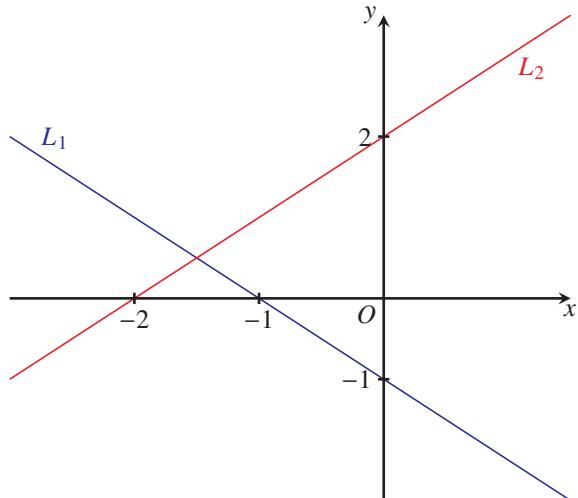
$$(-2, 0) \rightarrow d = -12$$

$$(0, 2) \rightarrow c = -6$$

I. \times .

II. \checkmark .

III. \checkmark .



41. D

Assign reasonable values to the intercepts.

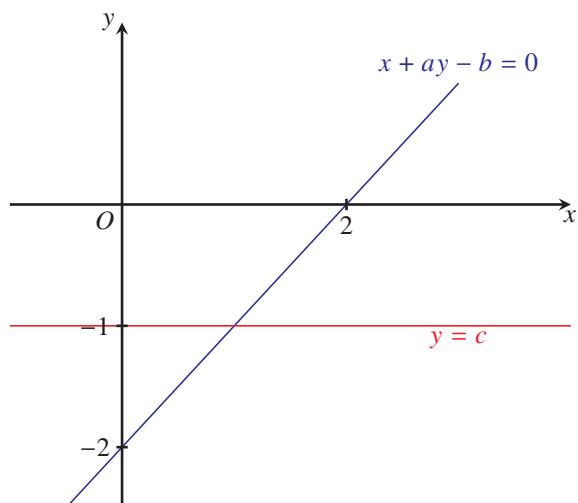
Use the points $(2, 0)$ and $(0, -2)$,
we have $a = -1$ and $b = 2$.

Use the point $(0, -1)$,
we have $c = -1$.

I. \times .

II. \checkmark .

III. \checkmark .



42. D

The slopes of two straight lines are equal.

$$-\frac{8}{a} = \frac{2}{8-a}$$

$$8a - 64 = 2a$$

$$a = \frac{32}{3}$$

43. B

Compute the x -intercepts, y -intercepts and slopes of two straight lines.

Line	x -intercept	y -intercept	Slope
L_1	$\frac{b}{3}$	$\frac{b}{a}$	$-\frac{3}{a}$
L_2	$-\frac{d}{c}$	$-d$	$-c$

I. ✓.

Consider the slope of L_1 .

$$-\frac{3}{a} > 0$$

$$a < 0$$

II. ✗.

Consider the y -intercept of L_2 .

$$-d > 0$$

$$d < 0$$

III. ✓.

Consider the x -intercepts of L_1 and L_2 .

$$\frac{b}{3} < -\frac{d}{c}$$

$$bc < -3d$$

(note that $c > 0$)

$$bc + 3d < 0$$

44. A

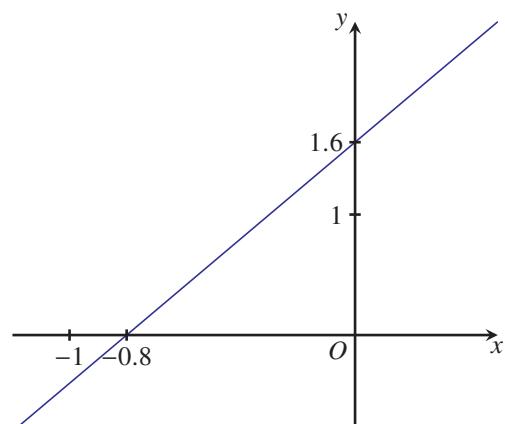
Assign reasonable values to the intercepts.

Use the points $(-0.8, 0)$ and $(0, 1.6)$,
we have $a = -5$ and $b = 2.5$.

I. ✓.

II. ✓.

III. ✗.



45. A

Two straight lines have equal slopes.

$$-\frac{a_1}{b_1} = -\frac{a_2}{b_2}$$

$$a_1 b_2 = a_2 b_1$$

46. C

Two straight lines have equal slopes.

$$-\frac{4}{a-4} = -\frac{a+7}{20}$$

$$80 = a^2 + 3a - 28$$

$$0 = a^2 + 3a - 108$$

$$a = -12 \quad \text{or} \quad 9$$

47. D

Compute the x -intercepts, y -intercepts and the slopes of two straight lines.

Line	x -intercept	y -intercept	Slope
L_1	$-\frac{4}{a}$	$\frac{4}{3}$	$\frac{a}{3}$
L_2	$\frac{5}{2}$	$\frac{5}{b}$	$-\frac{2}{b}$

I. ✓.

Slopes of two straight lines are negative.

$$\frac{a}{3} < 0 \quad \text{and} \quad -\frac{2}{b} < 0$$

$$a < 0 \quad b > 0$$

Thus, we have $a < 0 < b$.

II. ✓.

Consider the slopes of the two straight lines.

$$\frac{a}{3} < -\frac{2}{b}$$

$$ab < -6 \quad (\text{note that } b > 0)$$

III. ✓.

Consider the y -intercepts of two straight lines.

$$\frac{4}{3} > \frac{5}{b}$$

$$b > \frac{15}{4}$$

$$(\text{note that } b > 0)$$

48. D

Assign reasonable values to the intercepts.

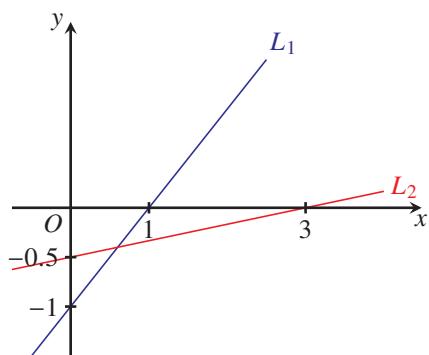
Use the points $(1, 0)$ and $(0, -1)$,
we have $a = 1$ and $b = 1$.

Use the point $(3, 0)$ and $(0, -0.5)$,
we have $m = 6$ and $n = 3$.

I. ✓.

II. ✓.

III. ✓.

49. D

I. ✓. Slope $= -\frac{a}{5} < 0 \Rightarrow a > 0$

II. ✓. y -intercept $= \frac{b}{5} < -1 \Rightarrow b < -5$

III. ✓. x -intercept $= \frac{b}{a} > -2$ and $a > 0 \Rightarrow b > -2a$

50. D

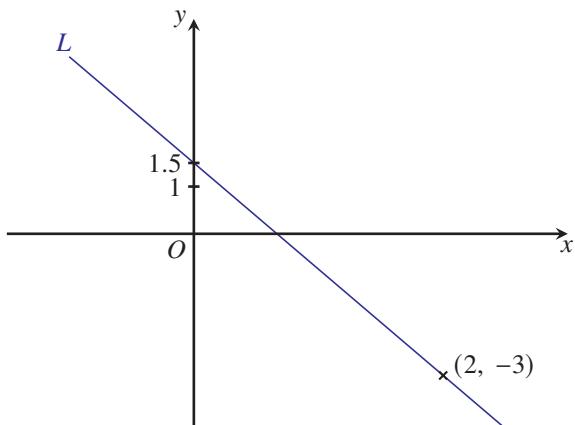
Assign reasonable values to the y -intercept.

Use the points $(0, 1.5)$ and $(2, -3)$,
we have $a = \frac{4}{9}$ and $b = -\frac{2}{3}$.

I. ✓.

II. ✓.

III. ✓.

51. D

I. ✗.

The graph of $y = \log_b x$ intersects the straight line $y = 1$ at $(b, 1)$.

The x -intercept of the graph of $y = \log_b x$ is 1.

Compare the x -coordinates of two points, we have $b < 1$.

II. ✓.

Let the equation of L be $x = k$, where $k > 1$.

The coordinates of A and B are $(k, \log_a k)$ and $(k, \log_b k)$ respectively.

$$AC = BC$$

$$\log_a k = -\log_b k$$

$$\frac{\log k}{\log a} = -\frac{\log k}{\log b}$$

$$\log b = -\log a$$

$$\log ab = 0$$

$$ab = 1$$

III. ✓.

The x -intercepts of two curves are 1.

52. A

$$\log_a 2 = \frac{1}{c} \quad \text{and} \quad \log_b 5 = \frac{1}{c}$$

$$\frac{\log 2}{\log a} = \frac{1}{c} \quad \frac{\log 5}{\log b} = \frac{1}{c}$$

$$\log a = c \log 2 \quad \log b = c \log 5$$

$$\begin{aligned} \log_{ab} 10 &= \frac{\log 10}{\log a + \log b} \\ &= \frac{1}{c(\log 2 + \log 5)} \\ &= \frac{1}{c} \end{aligned}$$

53. A

$$\frac{\log_3 y - 0}{\log_9 x - (-1)} = 10$$

$$\log_3 y = 10 \log_9 x + 10$$

$$\frac{\log y}{\log 3} = 10 \times \frac{\log x}{2 \log 3} + 10$$

$$\log y = 5 \log x + 10 \log 3$$

$$\log y = \log(3^{10} x^5)$$

$$y = 59049 x^5$$

54. D

$$y = \frac{0 - (-1)}{2 - 0} \log_4 x - 1$$

$$y = \frac{1}{2} \log_4 x - 1$$

$$\log_4 x = 2y + 2$$

$$x = 4^{2y+2}$$

$$x = 2^{4y+4}$$

$$x = 16 \cdot 16^y$$

We have $m = n = 16$.

I. \times .

II. \checkmark .

III. \checkmark .

55. B

$$\log_4 a = \frac{1}{c} \quad \text{and} \quad \log_{25} b = \frac{1}{c}$$

$$\frac{\log a}{2 \log 2} = \frac{1}{c} \quad \frac{\log b}{2 \log 5} = \frac{1}{c}$$

$$\log a = \frac{2 \log 2}{c} \quad \log b = \frac{2 \log 5}{c}$$

$$\log ab = \log a + \log b$$

$$= \frac{2 \log 2}{c} + \frac{2 \log 5}{c}$$

$$= \frac{2 \log 10}{c}$$

$$= \frac{2}{c}$$

56. C

$$\log_4 y = \frac{1 - 0}{0 - \left(-\frac{1}{2}\right)} x + 1$$

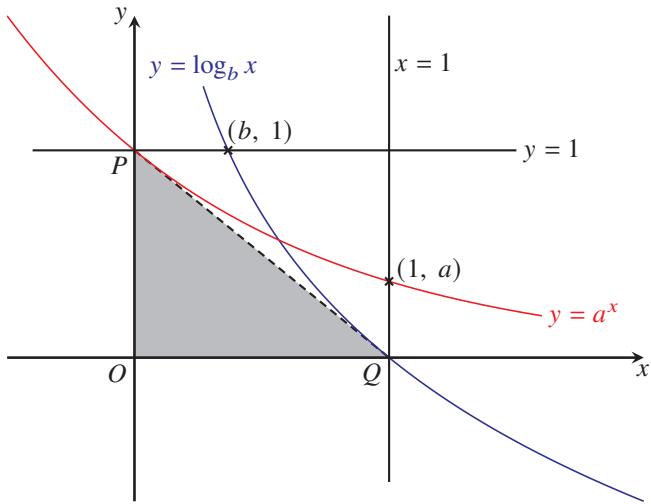
$$\log_4 y = 2x + 1$$

$$y = 4^{2x+1}$$

$$y = 4^{1+2x}$$

57. A

Note that the coordinates of P and Q are $(0, 1)$ and $(1, 0)$ respectively.



I. ✓. Observe the y -coordinates. We have $0 < a < 1$.

II. ✓. The graph of reflection image of $y = a^x$ is $y = \log_a x$.

We have $a = b$ and $\frac{a}{b} = 1$.

III. ✗. Note that $0 < a < 1$ and $0 < b < 1$.

$$\begin{aligned}\text{Area of } \triangle OPQ &= \frac{(1)(1)}{2} \\ &= \frac{1}{2} \\ &\neq \frac{1}{2}ab\end{aligned}$$

58. A

$$\log_8 y - 0 = \frac{1-0}{-1-2}(\log_8 x - 2)$$

$$\log_8 y = -\frac{1}{3} \log_8 x + \frac{2}{3}$$

$$\frac{\log y}{3 \log 2} = -\frac{1}{3} \times \frac{\log x}{3 \log 2} + \frac{2}{3}$$

$$\log y = -\frac{1}{3} \log x + 2 \log 2$$

$$\log y = \log\left(2^2 x^{-\frac{1}{3}}\right)$$

$$y = 4x^{-\frac{1}{3}}$$

Thus, $k = 4$.

59. B

(4, 0)

$$\log_2 x = 4 \quad \text{and} \quad \log_4 y = 0$$

$$x = 2^4$$

$$y = 1$$

(0, 5)

$$\log_2 x = 0 \quad \text{and} \quad \log_4 y = 5$$

$$\begin{array}{ll} x = 1 & y = 4^5 \\ & y = 2^{10} \end{array}$$

	x^5y^2	x^2y^5	x^4y^2	x^5y^4
$x = 2^4 \text{ and } y = 1$	2^{20}	2^8	2^{16}	2^{20}
$x = 1 \text{ and } y = 2^{10}$	2^{20}	2^{50}	2^{20}	2^{40}

The answer is B.

$$\text{Slope of the linear graph} = \frac{5 - 0}{0 - 4} = -\frac{5}{4}$$

$$\log_4 y - 5 = -\frac{5}{4}(\log_2 x - 0)$$

$$5 \log_2 x + 4 \log_4 y = 20$$

$$\frac{5 \log x}{\log 2} + \frac{4 \log y}{2 \log 2} = 20$$

$$5 \log x + 2 \log y = 20 \log 2$$

$$\log x^5 y^2 = \log 2^{20}$$

$$x^5 y^2 = 2^{20}$$

60. B

$$\text{Slope} = \frac{12 - 0}{0 - 3} = -4$$

The equation of the relationship is

$$\frac{y^3 - 12}{\log_5 x - 0} = -4$$

$$y^3 - 12 = -4 \log_5 x$$

Put $y = 2$.

$$2^3 - 12 = -4 \log_5 x$$

$$\log_5 x = 1$$

$$x = 5$$

61. A

$$y^2 - 0 = \frac{1 - 0}{-1 - 0} \times (\log_2 x - 0)$$

$$y^2 = -\log_2 x$$

$$\log_2 x = -y^2$$

$$x = 2^{-y^2}$$

$$x = \left(\frac{1}{2}\right)^{y^2}$$

62. D

The coordinates of A are $(a, 1)$.

The coordinates of B are $(a, \log_b a)$.

The coordinates of C are $(a, 0)$.

Since $0 < b < a < 1$, we have $\log_b a = \frac{\log b}{\log a} < \frac{\log a}{\log a} = 1$.

Thus, the point B lies below A .

$$\begin{aligned} \frac{AB}{BC} &= \frac{1 - \log_b a}{\log_b a - 0} \\ &= \frac{1}{\log_b a} - 1 \\ &= 1 \div \frac{\log a}{\log b} - 1 \\ &= \frac{\log b}{\log a} - 1 \\ &= \log_a b - 1 \end{aligned}$$

63. D

$$\log_3 y = \frac{2 - 0}{0 - (-4)} x + 2$$

$$\log_3 y = \frac{x}{2} + 2$$

$$y = 3^{\frac{x}{2} + 2}$$

$$y = 9 \cdot (\sqrt{3})^x$$

Thus, $m = 9$.

64. A

$$\log_4 m - \log_2 n = 1$$

$$\frac{\log m}{2 \log 2} - \frac{\log n}{\log 2} = 1$$

$$\log m - 2 \log n = 2 \log 2$$

$$\log \frac{m}{n^2} = \log 4$$

$$\frac{m}{n^2} = 4$$

$$\frac{n^2}{m} = \frac{1}{4}$$

65. B

$$\begin{aligned}\log_3 y &= \log_{27} a + \log_9 x \\ \frac{\log y}{\log 3} &= \frac{\log a}{3 \log 3} + \frac{\log x}{2 \log 3} \\ \log y &= \frac{1}{3} \log a + \frac{1}{2} \log x \\ &= \log a^{\frac{1}{3}} x^{\frac{1}{2}} \\ y &= a^{\frac{1}{3}} x^{\frac{1}{2}}\end{aligned}$$

66. A

$$\begin{aligned}\log_2 y &= \frac{5-0}{0-2} \log_8 x + 5 \\ \log_2 y &= -\frac{5}{2} \log_8 x + 5 \\ \frac{\log y}{\log 2} &= -\frac{5}{2} \times \frac{\log x}{3 \log 2} + 5 \\ 6 \log y &= -5 \log x + 30 \log 2 \\ \log(x^5 y^6) &= \log 2^{30} \\ x^5 y^6 &= 2^{30}\end{aligned}$$

67. A

When $x = 1$, we have $\log_2 x = 0$, $y = 4$ and $\log_2 y = 2$.

The graph of $\log_2 y$ against $\log_2 x$ passes through the point $(0, 2)$.

When $y = 1$, we have $\log_2 y = 0$, $x = 2$ and $\log_2 x = 1$.

The graph of $\log_2 y$ against $\log_2 x$ passes through the point $(1, 0)$.

The answer is A.

68. B

The coordinates of A and B are $(0, k)$ and $(0, q)$ respectively.

$$\begin{aligned}q &= k a^x \\ a^x &= \frac{q}{k} \\ x &= \log_a \frac{q}{k}\end{aligned}$$

The coordinates of C are $\left(\log_a \frac{q}{k}, q\right)$.

I. ✓.

The y -coordinate of A is negative.

II. ✗.

The value of $k a^x$ approaches zero when x increases.

Thus, $0 < a < 1$.

III. ✓.

$$BC < OA$$

$$0 - \log_a \frac{q}{k} < 0 - k$$
$$\log_a \frac{q}{k} > k$$

69. A

$$\log_2 y - 1 = \frac{1}{3}(\log_4 x + 3)$$

$$\log_2 y = \frac{1}{3} \log_4 x + 2$$

$$\frac{\log y}{\log 2} = \frac{\log x}{3(2 \log 2)} + 2$$

$$\log y = \frac{1}{6} \log x + 2 \log 2$$

$$= \log 2^2 x^{\frac{1}{6}}$$

$$y = 4x^{\frac{1}{6}}$$

Thus, we have $n = \frac{1}{6}$.

70. A

$$\log_2 y = \frac{3 - 0}{0 - 3} \log_2 x + 3$$

$$\log_2 y = -\log_2 x + 3$$

$$\frac{\log y}{\log 2} = -\frac{\log x}{\log 2} + 3$$

$$\log y = -\log x + 3 \log 2$$

$$\log y = \log(2^3 x^{-1})$$

$$y = 8x^{-1}$$

Thus, $m = 8$ and $n = -1$.

I. ✓.

II. ✗.

III. ✗.

The graph of $y = 8x^{-1}$ is not a straight line.

71. D

$$\log_2 y = \frac{2 - 0}{0 - 4} x^3 + 2$$

$$\log_2 y = -\frac{1}{2} x^3 + 2$$

Put $x = -2$.

$$\log_2 y = -\frac{1}{2}(-2)^3 + 2$$

$$\log_2 y = 6$$

$$y = 2^6$$

$$y = 64$$

72. B

$$\log_{27} y = \frac{3-0}{0-2} \log_9 x + 3$$

$$\frac{\log y}{3 \log 3} = -\frac{3}{2} \times \frac{\log x}{2 \log 3} + 3$$

$$4 \log y + 9 \log x = 36 \log 3$$

$$\log(x^9 y^4) = \log 3^{36}$$

$$x^9 y^4 = 3^{36}$$

$$x^9 y^4 = 9^{18}$$

73. D

$$\log_9 y - 4 = \frac{4-0}{0-(-2)}(x-0)$$

$$\log_9 y = 2x + 4$$

$$y = 9^{2x+4}$$

$$y = 6561 \cdot 81^x$$

Thus, $b = 81$.

74. C

When $x = 0$, we have $y = 4$ and $\log_2 y = 2$.

The coordinates of A are $(0, 2)$.

75. A

Consider the point $(0, 2)$.

$$\log_3 x = 0 \quad \text{and} \quad \log_3 y = 2$$

$$x = 1 \quad y = 3^2 = 9$$

Consider the point $(4, 0)$.

$$\log_3 x = 4 \quad \text{and} \quad \log_3 y = 0$$

$$x = 3^4 = 81 \quad y = 1$$

Check the relation using the values of x and y .

$$\underline{x = 1 \text{ & } y = 9} \quad \underline{x = 81 \text{ & } y = 1}$$

A. ✓ ✓

B. ✗

C. ✓ ✗

D. ✗

The answer is A.

76. B

Consider the coordinates of points A and B .

$$a^s = k \quad \text{and} \quad b^t = k$$

$$s = \log_a k \quad t = \log_b k$$

$$\begin{aligned} \frac{s}{t} &= \frac{\log_a k}{\log_b k} \\ &= \frac{\log k}{\log a} \div \frac{\log k}{\log b} \\ &= \frac{\log b}{\log a} \\ &= \log_a b \end{aligned}$$

77. C

I. ✓.

II. ✗.

Take $a = 2$, $b = 0.5$ and $k = 2$.

We have $\log_a k = \log_2 2 = 1$ and $\log_b k = \log_{0.5} 2 = -1$.

III. ✓.

Note that $a > b > 0$ and $k > 1$.

$$\begin{aligned} \frac{a}{b} &> 1 \\ \log \frac{a}{b} &> \log 1 \\ \frac{\log \frac{a}{b}}{\log k} &> 0 \\ \log_k \frac{a}{b} &> 0 \end{aligned}$$

78. B

$$\log_a 2016 = \frac{\log 2016}{\log a}$$

Note that $\log 0.5 < 0 < \log 5 < \log 6$.

We have $\log_{0.5} 2016 < 0 < \log_6 2016 < \log_5 2016$.

79. D

$$\log_9 y - 4 = \frac{4-1}{2-(-4)}(\log_9 x - 2)$$

$$\log_9 y - 4 = \frac{1}{2} \log_9 x - 1$$

$$\frac{\log y}{\log 9} - \frac{1}{2} \times \frac{\log x}{\log 9} = 3$$

$$2 \log y - \log x = 6 \log 9$$

$$\log \frac{y^2}{x} = \log 9^6$$

$$\frac{y^2}{x} = 9^6$$

80. D

$$\log y - 0 = 3(\log x - 2)$$

$$\log y = 3 \log x - 6$$

$$y = 10^{\log x^3 - 6}$$

$$y = 10^{-6} x^3$$

$$y = \frac{x^3}{1\,000\,000}$$

81. D

$$x^a y^b = 81^c$$

$$a \log x + b \log y = c \log 81$$

$$\frac{2a \log x}{2 \log 3} + \frac{3b \log y}{3 \log 3} = \frac{c \log 81}{\log 3}$$

$$2a \log_9 x + 3b \log_{27} y = 4c$$

Put $\log_9 x = 0$, we have $\log_{27} y = \frac{4c}{3b}$.

Put $\log_{27} y = 0$, we have $\log_9 x = \frac{2c}{a}$.

The coordinates of P and Q are $\left(0, \frac{4c}{3b}\right)$ and $\left(\frac{2c}{a}, 0\right)$ respectively.

$$OP : OQ = \frac{4c}{3b} : \frac{2c}{a}$$

$$= 2a : 3b$$

82. D

$$0 = \log_a(ax)$$

$$ax = 1$$

$$x = \frac{1}{a}$$

The coordinates of P are $\left(\frac{1}{a}, 0\right)$.

$$\begin{aligned} 0 &= \log_b(x + b) \quad \text{and} \quad y = \log_b(0 + b) \\ x + b &= 1 \\ x &= 1 - b \end{aligned}$$

The coordinates of Q and R are $(1 - b, 0)$ and $(0, 1)$ respectively.

Required area

$$\begin{aligned} &= \frac{1}{2} \times \left(\frac{1}{a} - (1 - b)\right) \times 1 \\ &= \frac{1}{2a} + \frac{b}{2} - \frac{1}{2} \end{aligned}$$

83. D

For the point $(0, -3)$.

$$\begin{aligned} \log_9 x &= 0 \quad \text{and} \quad \log_3 y = -3 \\ x &= 1 \quad y = 3^{-3} = \frac{1}{27} \end{aligned}$$

Only option D satisfies this pair of x and y .

84. D

Take logarithm on all numbers.

- A. $-375 \log 543 \approx -1025.5499$
- B. $\frac{1}{4321} \log 867 \approx 0.0006799$
- C. $349 \log \frac{1}{867} \approx -1025.3687$
- D. $492 \log \frac{2}{243} \approx -1025.6115$

The answer is D.

85. B

$$\log_8 y = \frac{0 - (-3)}{4 - 0} \log_4 x - 3$$

$$\frac{\log y}{3 \log 2} = \frac{3}{4} \times \frac{\log x}{2 \log 2} - 3$$

$$8 \log y = 9 \log x - 72 \log 2$$

$$\log y^8 = \log \frac{x^9}{2^{72}}$$

$$y^8 = \frac{x^9}{2^{72}}$$

$$x^9 = 2^{72} y^8$$

86. A

$$\log_8 y - 0 = \frac{1-0}{-1-2}(\log_8 x - 2)$$

$$\frac{\log y}{3 \log 2} = -\frac{1}{3} \times \frac{\log x}{3 \log 2} + \frac{2}{3}$$

$$\log y = -\frac{1}{3} \log x + 2 \log 2$$

$$\log y = \log\left(2^2 x^{-\frac{1}{3}}\right)$$

$$y = 4x^{-\frac{1}{3}}$$

Thus, $k = 4$.

87. C

(0, 2)

$$\log_5 x = 0 \quad \text{and} \quad \log_5 y = 2$$

$$x = 1 \quad y = 25$$

Put $x = 1$ and $y = 25$ into $y = kx^a$.

$$25 = k(1^a)$$

$$k = 25$$

88. A

Let m and c be the slope and the intercept on the vertical axis of the graph.

$$\log_5 y = mx + c$$

$$y = 5^{mx+c}$$

$$y = (5^m)^x \cdot 5^c$$

Since $m < 0$, we have $5^m < 1$ and the value of y is decreasing.

Since $c > 1$, we have $5^c > 5$ and the y -intercept of the required graph is greater than 5.

The answer is A.

89. D

Since the value of y is increasing and the base of log is greater than 1, the value of $\log_2 y$ is also increasing.

When $x = 0$, $y = 4$ and $\log_2 y = \log_2 4 = 2$.

The intercept on the vertical axis of the required graph is 2, which is positive.

The answer is D.

90. C

(0, -1)

$$\begin{array}{ll} \log_7 x = 0 & \text{and} \\ x = 1 & \log_7 y = -1 \\ & y = 7^{-1} \end{array}$$

We have $7^{-1} = a(1)^b$, and $a = \frac{1}{7}$.

(2, 0)

$$\begin{array}{ll} \log_7 x = 2 & \text{and} \\ x = 49 & \log_7 y = 0 \\ & y = 1 \end{array}$$

We have $1 = \frac{1}{7}(49)^b$, and $b = \frac{1}{2}$.