

| Solution                                                                                                                                                                                                         | Marks                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| <b>ELITE-2425-MOCK-SET 14-MATH-CP 1</b>                                                                                                                                                                          |                                  |
| <b>Suggested solutions</b>                                                                                                                                                                                       |                                  |
| 1. $\frac{5a - 3b}{4} = 1 - \frac{b}{2}$<br>$5a - 3b = 4 - 2b$<br>$5a = 4 + b$<br>$a = \frac{4 + b}{5}$                                                                                                          | 1M<br>1M<br>1A                   |
| 2. $\frac{2}{2x - 3} - \frac{3}{x - 1} = \frac{2(x - 1) - 3(2x - 3)}{(2x - 3)(x - 1)}$<br>$= \frac{7 - 4x}{(2x - 3)(x - 1)}$                                                                                     | 1M+1A<br>1A                      |
| 3. Required probability = $\frac{8}{4 \times 3}$<br>$= \frac{2}{3}$                                                                                                                                              | 1M+1A<br>1A                      |
| 4. (a) $8x^2 - 8x + 2 = 2(2x - 1)^2$<br>(b) $18xy^2 - 8x^3 + 8x^2 - 2x = 2x(3y)^2 - 2x(2x - 1)^2$<br>$= 2x(3y + 2x - 1)(3y - 2x + 1)$                                                                            | 1A<br>1M<br>1A                   |
| 5. Marked price = $\frac{2000}{1 - 20\%}$ = \$2500<br>Let the cost of each watch be \$x.<br>$6(2000) + 4(2500) = 10x + 7000$<br>$x = 1500$                                                                       | 1A<br>1M+1A<br>1A                |
| Required cost is \$1500.                                                                                                                                                                                         |                                  |
| 6. (a) $5x - 11 < \frac{2(x - 3)}{4}$<br>$\frac{9x}{2} < \frac{19}{2}$<br>$x < \frac{19}{9}$<br>(b) $5x - 41 \leq 0$<br>$x \leq \frac{41}{5}$<br>Thus, $x \leq \frac{41}{5}$ .<br>There are 8 positive integers. | 1M<br>1A<br>1A<br>1A<br>1A<br>1A |

| Solution                                                                                                                                             | Marks       |
|------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| <p>7. (a) <math>\frac{2x}{2+3} + \frac{1(3)}{3+2} = \frac{x+1}{2}</math><br/> <math>-\frac{x}{10} = -\frac{1}{10}</math><br/> <math>x = 1</math></p> | 1M+1A       |
| (b) Suppose $y$ litre beverage $B$ is added to the mixture.                                                                                          | 1A          |
| $1 + \frac{3y}{5} = (2+y) \times 60\%$<br>$1 = 1.2$ (contradiction)<br><p>It is impossible.</p>                                                      | 1M<br>1A    |
| 8. Total distance travelled = $(2x + 8)$ km                                                                                                          | 1A          |
| Consider the total time taken.                                                                                                                       |             |
| $\frac{x}{60} + \frac{4}{60} + \frac{x+8}{80} = \frac{2x+8}{66}$<br>$-\frac{x}{880} = -\frac{1}{22}$<br>$x = 40$                                     | 2M+1A<br>1A |
| 9. (a) Let the base radius and height of the cylinder be $r$ cm and $h$ cm respectively.                                                             |             |
| $2\pi rh = \frac{1}{2}(2\pi rh + 2\pi r^2)$<br>$h = r$<br>$\pi r^2 h = 216\pi$<br>$r^3 = 216$<br>$r = 6$                                             | 1M<br>1A    |
| Base radius = 6 cm                                                                                                                                   |             |
| (b) Percentage change = $\frac{2(6)(12)}{2\pi(6)^2 + 2\pi(6)(6)} \times 100\%$<br>$\approx 31.8\%$                                                   | 1M+1M<br>1A |
| 10. (a) Let $p(x) = ax + b(x+1)^2$ , where $a$ and $b$ are non-zero constants.                                                                       | 1A          |
| $\begin{cases} 7 = -3a + 4b \\ 3 = a + 4b \end{cases}$                                                                                               | 1M          |
| Solving, we have $a = -1$ and $b = 1$ .                                                                                                              | 1A          |
| Thus, $p(x) = -x + (x+1)^2$ .                                                                                                                        |             |
| (b) $-x + (x+1)^2 = 7 - x^2$<br>$2x^2 + x - 6 = 0$<br>$x = -2 \quad \text{or} \quad \frac{3}{2}$                                                     | 1M<br>1A    |

| Solution                                                                                                                                                                                                                                                    | Marks |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 11. (a) $\begin{aligned}f(x) &= 2(x-2)(x^2 - 4x + 1) + ax + b \\&= 2x^3 - 12x^2 + (18 + a)x + (b - 4)\end{aligned}$                                                                                                                                         | 1M    |
| We have $2b = -12$ , $18 + a = 7a$ and $c = b - 4$ .                                                                                                                                                                                                        | 1M    |
| Solving, we have $a = 3$ , $b = -6$ and $c = -10$ .                                                                                                                                                                                                         | 1A    |
| (b) $\begin{aligned}0 &= 2(x-2)(x^2 - 4x + 1) + 3x - 6 \\&= (x-2)[2(x^2 - 4x + 1) + 3] \\&= (x-2)(2x^2 - 8x + 5) \\x &= 2 \quad \text{or} \quad \frac{8 \pm \sqrt{8^2 - 4(2)(5)}}{2(2)} \\&= 2 \quad \text{or} \quad \frac{4 \pm \sqrt{6}}{2}\end{aligned}$ | 1M    |
| There is 1 rational root.                                                                                                                                                                                                                                   | 1A    |
| 12. (a) (i) Mode = 39                                                                                                                                                                                                                                       |       |
| Thus, $a = b = 9$ .                                                                                                                                                                                                                                         | 1A    |
| (ii) $\frac{(50+c)+51}{2} - \frac{(30+d)+30}{2} = 21$                                                                                                                                                                                                       | 1M    |
| $c - d = 1$                                                                                                                                                                                                                                                 |       |
| Range = $(60+d) - (20+c)$                                                                                                                                                                                                                                   |       |
| $\begin{aligned}&= 40 - (c - d) \\&= 39\end{aligned}$                                                                                                                                                                                                       | 1A    |
| (b) Mean = $\begin{aligned}&\frac{(20+c) + 25 + 26 + \dots + (60+d)}{20} \\&= \frac{830 + 2(c+d)}{20}\end{aligned}$                                                                                                                                         | 1M    |
| Since $c - d = 1$ , $1 \leq c \leq 5$ and $2 \leq d \leq 5$ , we have $3 \leq c + d \leq 9$ .                                                                                                                                                               | 1M    |
| $\frac{830 + 2(3)}{20} = 41.8 \leq \text{mean} \leq \frac{830 + 2(9)}{20} = 42.4$                                                                                                                                                                           |       |
| Thus, mean = 42 and $c + d = 5$ .                                                                                                                                                                                                                           | 1A    |
| Solving, we have $c = 3$ and $d = 2$ .                                                                                                                                                                                                                      |       |
| Standard deviation $\approx 11.9$                                                                                                                                                                                                                           | 1A    |

| Solution                                                                                                                                                                                                                                                                                                                                                                                              | Marks          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| 13. (a) $\angle ADC = 90^\circ$ and $\angle CDE = 90^\circ - 60^\circ = 30^\circ$<br>$\angle DCE = 180^\circ - 60^\circ = 120^\circ$<br>$\angle CED = 180^\circ - 120^\circ - 30^\circ = 30^\circ = \angle CDE$<br>Thus, $CD = CE$ and $\triangle CDE$ is isosceles.                                                                                                                                  | 1A<br>1A<br>1A |
| (b) In $\triangle BEF$ , $\angle EBF = 90^\circ$ and $\angle BEF = 30^\circ$ .<br>$\text{Thus, } EF = \frac{BE}{\cos 30^\circ}.$<br>In $\triangle CDE$ , $DE = 2CE \cos 30^\circ$ .<br>In $\triangle ADF$ , $DF = AD = 5\sqrt{3}$ cm.<br>$2CE \cos 30^\circ + \frac{BE}{\cos 30^\circ} = 5\sqrt{3}$<br>$BC \cos 30^\circ + \frac{BC}{2 \cos 30^\circ} = 5\sqrt{3}$<br>$BC = 6 \text{ cm}$             | 1M<br>1A       |
| (c) Let $M$ be the mid-point of $DF$ .<br>$GM = \frac{DF}{2} \times \tan 30^\circ = \frac{5}{2} \text{ cm}$<br>$CE = \frac{BC}{2} = 3 \text{ cm}$<br>Area of $\triangle GDE = \frac{1}{2}(GM)(DE)$<br>Area of $\triangle CDE = \frac{1}{2}(CE \sin 30^\circ)(DE)$<br>$= \frac{1}{2}(1.5)(DE)$<br>$< \frac{1}{2}(GM)(DE)$<br>Area of $\triangle CDE <$ area of $\triangle GDE$<br>The claim is agreed. | 1A<br>1A<br>1A |

| Solution                                                                                                                                                                                                                                                                                                                                                                                                                                              | Marks |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| <p>14. (a) (i) <math>\angle EHG = 90^\circ</math> <i>(property of rectangle)</i></p> $\angle EHA = 180^\circ - 90^\circ = 90^\circ \quad \text{(adj. } \angle \text{s on st. line)}$ $\angle ADN = 90^\circ = \angle EHA \quad \text{(property of square)}$ $CD \parallel AB \quad \text{(property of square)}$ $\angle DNA = \angle EAH \quad \text{(alt. } \angle \text{s, } CD \parallel AB)$ $\triangle EHA \sim \triangle ADN \quad \text{(AA)}$ |       |
| <b>Marking Scheme</b>                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |
| <b>Case 1</b> Any correct proof with correct reasons.                                                                                                                                                                                                                                                                                                                                                                                                 | 2     |
| <b>Case 2</b> Any correct proof without reasons.                                                                                                                                                                                                                                                                                                                                                                                                      | 1     |
| <p>(ii) <math>\angle CGN = 90^\circ</math> <i>(property of rectangle)</i></p> $\angle ADN = 90^\circ = \angle CGN \quad \text{(property of square)}$ $\angle DNA = \angle GNC \quad \text{(vert. opp. } \angle \text{s)}$ $\triangle CGN \sim \triangle ADN \quad \text{(AA)}$                                                                                                                                                                        |       |
| <b>Marking Scheme</b>                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |
| <b>Case 1</b> Any correct proof with correct reasons.                                                                                                                                                                                                                                                                                                                                                                                                 | 2     |
| <b>Case 2</b> Any correct proof without reasons.                                                                                                                                                                                                                                                                                                                                                                                                      | 1     |
| (b) (i) From (a), $\triangle EHA \sim \triangle CGN$ .                                                                                                                                                                                                                                                                                                                                                                                                | 1M    |
| $\frac{GC}{EH} = \frac{CN}{AE}$ $\frac{p}{p+1} = \frac{6-k}{4}$ $\frac{4p}{p+1} - 6 = -k$ $k = \frac{2p+6}{p+1}$                                                                                                                                                                                                                                                                                                                                      | 1M+1M |
| (ii) $\frac{2p+6}{p+1} > 3$ and $\frac{2p+6}{p+1} < 6$                                                                                                                                                                                                                                                                                                                                                                                                | 1M    |
| $2p+6 > 3p+3$ $2p+6 < 6p+6$                                                                                                                                                                                                                                                                                                                                                                                                                           |       |
| $p < 3$ $p > 0$                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |
| Thus, $0 < p < 3$ .                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1A    |
| 15. Required number = $8 \times 7 \times C_3^{13} + 7 \times 6 \times C_3^{13}$                                                                                                                                                                                                                                                                                                                                                                       | 1M+1A |
| = 28 028                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1A    |

| Solution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Marks |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 16. $\frac{256}{2^a} = \frac{2^b}{256} \quad \text{and} \quad 3 - \log_2(a-2) = \log_2(b+20) - 3$ $2^{a+b} = 2^{16} \quad \quad \quad 6 = \log_2[(a-2)(b+20)]$ $a+b = 16 \quad \quad \quad (a-2)(b+20) = 2^6$ $(a-2)[(16-a)+20] = 64$ $-a^2 + 38a - 136 = 0$ $a = 34 \quad \text{or} \quad 4$ <p>When <math>a = 34</math>, <math>b = 16 - 34 = -18</math> (rejected).</p> <p>When <math>a = 4</math>, <math>b = 16 - 4 = 12</math>.</p> <p>Thus, <math>a = 4</math> and <math>b = 12</math>.</p> | 1M+1M |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1M    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1A+1A |
| 17. (a) Let $M$ be the mid-point of $AC$ .<br>$BM = 20 \sin 60^\circ = 10\sqrt{3}$ cm<br>$BE = BM \sin 60^\circ = 15$ cm<br>$\angle BEC = 90^\circ$ . So, $BC$ is a diameter of the circumcircle of $\triangle BCE$ .<br>Thus, $DE = DB = DC = \frac{20}{2} = 10$ cm                                                                                                                                                                                                                             | 1A    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1M    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1A    |
| (b) $AE = \sqrt{AB^2 - BE^2}$<br>$= \sqrt{175}$ cm<br>$AD = BM = 10\sqrt{3}$ cm<br>$AE^2 = AD^2 + DE^2 - 2(AD)(DE) \cos \angle ADE$<br>$\angle ADE \approx 49.5^\circ \neq 90^\circ$<br>The claim is disagreed.                                                                                                                                                                                                                                                                                  | 1M    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1A    |

| Solution                                                                                                                                    | Marks |
|---------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 18. (a) Let the radius be $r$ . The coordinates of $A$ are $(0, r)$ .                                                                       |       |
| $(3 - 0)^2 + (r - 9)^2 = r^2$                                                                                                               | 1M    |
| $-18r + 90 = 0$                                                                                                                             |       |
| $r = 5$                                                                                                                                     | 1A    |
| The coordinates of $A$ are $(0, 5)$ .                                                                                                       |       |
| (b) $x^2 + (y - 5)^2 = 5^2$                                                                                                                 | 1M    |
| $x^2 + y^2 - 10y = 0$                                                                                                                       | 1A    |
| (c) (i) $\Gamma$ is a pair of straight lines perpendicular to $L$ and their perpendicular distances from $AB$ are equal to $\frac{BC}{2}$ . | 1A+1A |
| (ii) Let the coordinates of $C$ be $(t, 0)$ .                                                                                               |       |
| $\frac{9 - 0}{3 - t} \times \frac{9 - 5}{3 - 0} = -1$                                                                                       | 1M    |
| $t = 15$                                                                                                                                    |       |
| Required distance $= \frac{BC}{2} - r$                                                                                                      | 1M    |
| $= \frac{OC}{2} - 5$                                                                                                                        |       |
| $= \frac{5}{2}$                                                                                                                             | 1A    |

| Solution                                                                                        | Marks |
|-------------------------------------------------------------------------------------------------|-------|
| 19. (a) $B(-3, 4)$                                                                              | 1A    |
| Axis of symmetry of $P$ is $x = \frac{6a}{2a}$ , i.e., $x = 3$ .                                | 1A    |
| The coordinates of $C$ are $(9, 4)$ .                                                           | 1A    |
| (b) $f(3) = 9a - 18a + 9a + b = b$                                                              | 1M    |
| The coordinates of vertex of $P$ are $(3, b)$ .                                                 |       |
| $b - (-4) = 5$                                                                                  |       |
| $b = 1$                                                                                         | 1A    |
| $P$ passes through $B$ .                                                                        |       |
| $a(-3)^2 - 6a(-3) + (9a + 1) = 4$                                                               |       |
| $36a + 1 = 4$                                                                                   |       |
| $a = \frac{1}{12}$                                                                              | 1A    |
| (c) (i) Area of $ABDC$ is the greatest when $AD$ is a diameter, i.e., $\angle ABD = 90^\circ$ . | 1M    |
| By symmetry, the coordinates of $D$ are $(3, k)$ , where $k$ is a constant.                     |       |
| $\frac{k-4}{3+3} \times \frac{4+4}{-3-3} = -1$                                                  | 1M    |
| $k = \frac{17}{2}$                                                                              | 1A    |
| The coordinates of $D$ are $\left(3, \frac{17}{2}\right)$ .                                     |       |
| (ii) $AB = \sqrt{(3+3)^2 + (4+4)^2} = 10$                                                       |       |
| $BD = \sqrt{(3+3)^2 + \left(\frac{17}{2} - 4\right)^2} = \frac{15}{2}$                          | 1A    |
| Let the radius of the inscribed circle be $r$ .                                                 |       |
| $\frac{\frac{15}{2} - r}{r} = \frac{\left(\frac{15}{2}\right)}{10}$                             | 1M    |
| $r = \frac{30}{7}$                                                                              |       |
| Area of the circle = $\pi \left(\frac{30}{7}\right)^2$                                          |       |
| $< 25\pi$                                                                                       |       |
| The claim is agreed.                                                                            | 1A    |