

1. (a) $AD = CB$ (property of square)
 $\angle ADR = 90^\circ$ (property of square)
 $\angle CBP = 90^\circ$ (property of square)
 $= \angle ADR$
 $\angle CPB = \angle RAB$ (corr. \angle s, $AR \parallel PC$)
 $\angle ARD = \angle RAB$ (alt. \angle s, $AB \parallel DC$)
 $= \angle CPB$
 $\triangle ADR \cong \triangle CBP$ (AAS)

Marking Scheme

Case 1	Any correct proof with correct reasons.	2
Case 2	Any correct proof without reasons.	1

(b) $\angle ARD + \angle DAR + 90^\circ = 180^\circ$

$$\angle ARD + \frac{\angle ARD}{4} = 90^\circ$$

$$\angle ARD = 72^\circ$$

Since $\triangle ADR \cong \triangle CBP$, we have $\angle CPB = \angle ARD = 72^\circ$.

1M

Note that $QC = AR = PC$. $\triangle CPQ$ is an isosceles triangle.

1M

$$\angle CQB = \angle CPB = 72^\circ$$

1A

2. (a) $\triangle ABE \sim \triangle CDE$ (given)
 $\angle BAE = \angle DCE$ (corr. \angle s, $\sim \triangle$ s)
 $AB \parallel DC$ (alt. \angle s equal)

Marking Scheme

Case 1	Any correct proof with correct reasons.	2
Case 2	Any correct proof without reasons.	1

(b) $\angle BDC = \angle ABD$

1M

$$\angle BDC + \angle ACD = \angle BEC$$

$$\angle BDC + 2\angle BDC = 75^\circ$$

$$\angle BDC = 25^\circ$$

$$\angle ADC = \frac{180^\circ - \angle ACD}{2}$$

1M

$$= 65^\circ$$

$$\angle ADB = 65^\circ - 25^\circ$$

$$= 40^\circ$$

1A

3. (a) $\angle ABC = 90^\circ$ (given)
 $\angle BCD + 90^\circ = 180^\circ$ (int. \angle s, $AB \parallel DC$)
 $\angle BCD = 90^\circ = \angle ABC$
 $\angle BAE = \angle CED$ (given)
 $\triangle ABE \sim \triangle ECD$ (AA)

Marking Scheme

Case 1	Any correct proof with correct reasons.	2
Case 2	Any correct proof without reasons.	1

(b) (i) $\angle AEB = \angle EDC$ 1M
 $\angle AED = 180^\circ - \angle AEB - \angle DEC$
 $= 180^\circ - \angle EDC - \angle DEC$
 $= \angle DCE$
 $= 90^\circ$
 $\triangle ADE$ is a right-angled triangle. 1A
(ii) $\frac{AE}{DE} = \frac{AB}{CE}$ 1M
 $\frac{AE}{28} = \frac{12}{16}$
 $AE = 21 \text{ cm}$
Required area = $\frac{(21)(28)}{2}$
 $= 294 \text{ cm}^2$ 1A

4. (a) (i) $AB = AD$ (given)
 $\angle ABC = \angle ADC = 90^\circ$ (given)
 $AC = AC$ (common side)
 $\triangle ABC \cong \triangle ADC$ (RHS)

Marking Scheme

Case 1	Any correct proof with correct reasons.	2
Case 2	Any correct proof without reasons.	1

(ii) $\triangle ABC \cong \triangle ADC$ (proved)
 $CD = BC$ (corr. sides, \cong \triangle s)
 $\angle ECD = \angle ECB$ (corr. \angle s, \cong \triangle s)
 $CE = CE$ (common side)
 $\triangle BCE \cong \triangle DCE$ (SAS)

Marking Scheme

Case 1	Any correct proof with correct reasons.	2
---------------	---	---

Case 2	Any correct proof without reasons.	1
---------------	------------------------------------	---

(b) $\angle BFD + \angle FBC = 90^\circ + 90^\circ = 180^\circ$

Therefore, $DE \parallel BC$.

1M

We have $\angle DEC = \angle BCE$ and $\angle DEC = \angle BEC$.

1M

Thus, we have $\angle BEC = \angle BCE$ and $BE = BC$.

Then $DE = CD = CB = BE$ and $BCDE$ is a rhombus.

1A

The claim is correct.

5. (a) $\angle ABE = \angle CDE$ (alt. \angle s, $AB \parallel DC$)

$\angle BAE = \angle DCE$ (alt. \angle s, $AB \parallel DC$)

$\triangle ABE \sim \triangle CDE$ (AA)

Marking Scheme

Case 1	Any correct proof with correct reasons.	2
---------------	---	---

Case 2	Any correct proof without reasons.	1
---------------	------------------------------------	---

(b) $\frac{CE}{CD} = \frac{AE}{AB}$

$$\frac{CE}{74} = \frac{175 - CE}{111}$$

$$111CE = 12950 - 74CE$$

$$CE = 70 \text{ cm}$$

$$DC^2 = 74^2 = 5476 \text{ cm}^2$$

$$DE^2 + CE^2 = 24^2 + 70^2 = 5476 \text{ cm}^2 = DC^2$$

1A

Thus, $\angle DEC = 90^\circ$.

We have $\angle BEC = 180^\circ - 90^\circ = 90^\circ$.

$\triangle BCE$ is a right-angled triangle.

1A

6. (a) $\angle BEC = \angle ECD$ (given)

$BE \parallel CD$ (alt. \angle s equal)

$\angle BEA = \angle CDE$ (corr. \angle s, $BE \parallel CD$)

$\angle BAE = \angle CED$ (corr. \angle s, $AB \parallel EC$)

$\triangle ABE \sim \triangle ECD$ (AA)

Marking Scheme

Case 1	Any correct proof with correct reasons.	2
---------------	---	---

Case 2	Any correct proof without reasons.	1
---------------	------------------------------------	---

$$(b) \frac{AB}{EC} = \frac{AE}{ED}$$

$$\frac{36}{12} = \frac{80 - ED}{ED}$$

$$36ED = 960 - 12ED$$

$$ED = 20 \text{ cm}$$

$$CE^2 + CD^2 = 12^2 + 16^2 = 400 \text{ cm}^2$$

$$ED^2 = 20^2 = 400 \text{ cm}^2 = CE^2 + CD^2$$

1M

We have $\angle ECD = 90^\circ$.

Since $\triangle ABE \sim \triangle ECD$, we have $\angle ABE = \angle ECD = 90^\circ$.

Thus, $\triangle ABE$ is a right-angled triangle.

1A

7. (a) $\angle BAC = \angle ADC$ (given)

$$\angle DAC = \angle ACB \quad (\text{alt. } \angle \text{s, } AD \parallel BC)$$

$$\triangle ADC \sim \triangle CAB \quad (\text{AA})$$

Marking Scheme

Case 1	Any correct proof with correct reasons.	2
Case 2	Any correct proof without reasons.	1

$$(b) \frac{AC}{CB} = \frac{DC}{AB}$$

$$\frac{AC}{625} = \frac{168}{175}$$

1M

$$AC = 600 \text{ cm}$$

$$AB^2 + AC^2 = 175^2 + 600^2 = 390\,625 \text{ cm}^2$$

$$BC^2 = 625^2 = 390\,625 \text{ cm}^2 = AB^2 + AC^2$$

1M

We have $\angle BAC = 90^\circ$.

Also, $\angle ADC = \angle BAC = 90^\circ$.

The claim is agreed.

1A

8. (a) $\angle ABE = \angle ECF = 90^\circ$ (property of square)

$$\angle BEA + \angle ABE + \angle BAE = 180^\circ \quad (\angle \text{ sum of } \triangle)$$

$$\angle BAE = 90^\circ - \angle BEA$$

$$\angle AEF = 90^\circ \quad (\text{given})$$

$$\angle BEA + \angle AEF + \angle CEF = 180^\circ \quad (\text{adj. } \angle \text{s on st. line})$$

$$\angle CEF = 90^\circ - \angle BEA$$

$$= \angle BAE$$

$$\triangle ABE \sim \triangle ECF \quad (\text{AA})$$

Marking Scheme

Case 1	Any correct proof with correct reasons.	2
---------------	---	---

Case 2	Any correct proof without reasons.	1
---------------	------------------------------------	---

$$\begin{aligned}
 (b) \quad \frac{BE}{CF} &= \frac{AB}{EC} & \\
 \frac{48 - 12}{CF} &= \frac{48}{12} & 1M \\
 CF &= 9 \text{ cm}
 \end{aligned}$$

Required area

$$\begin{aligned}
 &= 48^2 - \frac{(48)(36)}{2} - \frac{(12)(9)}{2} - \frac{(48)(48 - 9)}{2} & 1M \\
 &= 450 \text{ cm}^2 & 1A
 \end{aligned}$$

9. (a) $\angle EFD = \angle AFB$ (vert. opp. \angle s)

$$\angle EDF = 90^\circ - \angle CBE \quad (\text{given})$$

$$\angle ABC = 90^\circ \quad (\text{given})$$

$$\angle ABF = 90^\circ - \angle CBE$$

$$= \angle EDF$$

$$\triangle DEF \sim \triangle BAF \quad (\text{AA})$$

Marking Scheme

Case 1	Any correct proof with correct reasons.	2
---------------	---	---

Case 2	Any correct proof without reasons.	1
---------------	------------------------------------	---

$$\begin{aligned}
 (b) \quad (i) \quad \angle DEF &= \angle BAF = 90^\circ & 1M \\
 \triangle BDE \text{ is a right-angled triangle.} & & 1A
 \end{aligned}$$

(ii) Let $DF = x$ cm. Then $AF = (25 - x)$ cm.

$$\begin{aligned}
 \frac{DF}{BF} &= \frac{EF}{AF} & \\
 \frac{x}{25} &= \frac{6}{25 - x} & 1M \\
 25x - x^2 &= 150
 \end{aligned}$$

$$-x^2 + 25x - 150 = 0$$

$$x = 10 \quad \text{or} \quad 15 \quad (\text{rejected})$$

$$DE = \sqrt{10^2 - 6^2} = 8 \text{ cm} \quad 1M$$

$$BD = \sqrt{(25 + 6)^2 + 8^2} = \sqrt{1025} \text{ cm}$$

$$\text{Required perimeter} = (25 + 6) + 8 + \sqrt{1025}$$

$$= (39 + 5\sqrt{41}) \text{ cm} \quad 1A$$

$$\approx 71.0 \text{ cm}$$

10. (a) $\angle ABH = 90^\circ$ (property of square)
 $\angle BCG = 90^\circ$ (property of square)
 $= \angle ABH$
 $AB = BC = CD$ (property of square)
 $DG = HC$ (given)
 $BH = BC - HC$
 $= CD - DG$
 $= CG$
 $\triangle ABH \cong \triangle BCG$ (SAS)

Marking Scheme

Case 1	Any correct proof with correct reasons.	2
Case 2	Any correct proof without reasons.	1

(b) $\triangle BHF, \triangle AHB, \triangle BGC$ 1A

(c) Note that $\triangle AHB \sim \triangle ABF$.

$$\frac{AB}{AF} = \frac{AH}{AB} \quad (\text{corr. sides, } \sim \triangle s) \quad 1M$$

$$AB^2 = AF(AF + AH)$$

$$AB^2 - AF^2 = AF \times FH \quad 1$$

11. (a) $DE = DE$ (common side)
 $\angle DFE = 90^\circ$ (given)
 $\angle DCE = 90^\circ$ (property of rectangle)
 $= \angle DFE$
 $AD = AE$ (given)
 $\angle AED = \angle ADE$ (base \angle s, isos. \triangle)
 $AD \parallel BC$ (property of rectangle)
 $\angle CED = \angle ADE$ (alt. \angle s, $AD \parallel BC$)
 $= \angle AED$
 $\triangle CDE \cong \triangle FDE$ (AAS)

Marking Scheme

Case 1	Any correct proof with correct reasons.	3
Case 2	Any correct proof without reasons.	2
Case 3	Incomplete proof with any one correct step with reason.	1

(b) $AF = AE - FE = AE - CE = 5 - 1 = 4 \text{ cm}$ 1M
 $DF = \sqrt{AD^2 - AF^2} = \sqrt{5^2 - 4^2} = 3 \text{ cm}$ 1M

$$\text{Area of } \triangle ADF = \frac{1}{2}(4)(3) = 6 \text{ cm}^2$$

1A

12. (a) We have $CE = AD = 7 \text{ cm}$ and $DF = CG$.

1M

$$CG = DF$$

$$= 10 - CE + EF$$

$$= 10 - 7 + 3$$

$$= 6 \text{ cm}$$

1A

$$(b) \angle HEF = \angle CEG \quad (\text{common } \angle)$$

$$\triangle ADF \cong \triangle ECG \quad (\text{given})$$

$$\angle EFH = \angle EGC \quad (\text{corr. } \angle s, \cong \triangle)$$

$$\triangle EHF \sim \triangle ECG \quad (\text{AA})$$

Marking Scheme

Case 1 Any correct proof with correct reasons.

2

Case 2 Any correct proof without reasons.

1

$$(c) EG = \sqrt{6^2 + 7^2} = \sqrt{85} \text{ cm}$$

1M

Let h be the perpendicular distance from H to EF .

Consider the area ratio of $\triangle EFH$ and $\triangle CEG$.

$$\frac{\left(\frac{(3)(h)}{2}\right)}{\left(\frac{(7)(6)}{2}\right)} = \left(\frac{3}{\sqrt{85}}\right)^2$$

$$h = \frac{126}{85}$$

1M

Minimum length of $HT = 7 - h$

1M

$$\approx 5.52 \text{ cm}$$

$$< 5.6 \text{ cm}$$

The claim is agreed.

1A

13. (a) $\angle DCE = \angle DCB \quad (\text{given})$

$$\angle EDC = \angle DCB \quad (\text{alt. } \angle s, BC \parallel DE)$$

$$= \angle DCE$$

$$DE = CE \quad (\text{sides opp. equal } \angle s)$$

Marking Scheme

Case 1 Any correct proof with correct reasons.

2

Case 2 Any correct proof without reasons.

1

(b) Note that $\triangle ADE \sim \triangle ABC$.

$$\begin{aligned}
AE : AC &= AD : AB \\
&= 5 : (5 + 3) \\
AE : EC &= 5 : (8 - 5) \\
&= 5 : 3 && 1A \\
\sin \angle BAC &= \frac{DE}{AE} && 1M \\
&= \frac{CE}{AE} \\
&= \frac{3}{5} \\
\angle BAC &\approx 36.9^\circ && 1A
\end{aligned}$$

14. (a) $CB = CD$ (property of square)
 $BQ = DP$ (given)
 $\angle CDP = 90^\circ$ (property of square)
 $\angle CBA = 90^\circ$ (property of square)
 $\angle CBQ + \angle CBA = 180^\circ$ (adj. \angle s on st. line)
 $\angle CBQ + 90^\circ = 180^\circ$
 $\angle CBQ = 90^\circ$
 $= \angle CDP$
 $\triangle CBQ \cong \triangle CDP$ (SAS)

Marking Scheme		
Case 1	Any correct proof with correct reasons.	2
Case 2	Any correct proof without reasons.	1

(b) We have $\angle BCQ = \angle DCP$.
 $\angle PCQ = \angle BCQ + \angle BCP$
 $= \angle DCP + \angle BCP$
 $= \angle BCD$
 $= 90^\circ$

Thus, $\triangle CPQ$ is a right-angled triangle. 1A

(c) $CP = CQ = 8$ cm
 $\triangle CPQ$ is a right-angled isosceles triangle.
We have $\angle CPQ = 45^\circ$.

Let d be the shortest distance between C and PQ .

$$\begin{aligned}
\sin 45^\circ &= \frac{d}{PC} && 1M \\
d &= 4\sqrt{2} \text{ cm} \\
&> 5 \text{ cm}
\end{aligned}$$

There is no point F on PQ such that the distance between F and C is less than 5 cm. 1A

$$\begin{aligned}
15. \quad (a) \quad & \angle CFE = 90^\circ & (given) \\
& \angle CFB = 90^\circ & (given) \\
& \angle DFE = \angle CFB = 90^\circ & (vert. opp. \angle s) \\
& \angle CED = 90^\circ & (prop. of rectangle) \\
& \angle FED = 90^\circ - \angle CEF \\
& \angle CEF + \angle EFC + \angle FCE = 180^\circ & (\angle \text{ sum of } \triangle) \\
& \angle CEF + 90^\circ + \angle FCE = 180^\circ \\
& \angle FCE = 90^\circ - \angle CEF \\
& \quad = \angle FED \\
& \triangle CEF \sim \triangle EDF & (AA)
\end{aligned}$$

Marking Scheme		
Case 1	Any correct proof with correct reasons.	2
Case 2	Any correct proof without reasons.	1

(b) (i) Note that $CE = AD = BC$ and $CF \perp BE$. 1M
 We have $BF = EF$.
 F is the mid-point of BE . 1
 (ii) $EF = BF = 12 \text{ cm}$
 $CF = \sqrt{15^2 - 12^2} = 9 \text{ cm}$ 1M
 Since $\triangle CEF \sim \triangle EDF$.

$$\frac{ED}{CE} = \frac{EF}{CF}$$

$$\frac{ED}{15} = \frac{12}{9}$$
 1M
 $ED = 20 \text{ cm}$ 1A

16. D

$$\begin{aligned}
DE &= \frac{1}{2}AD = 1 \text{ cm} \\
DG &= \frac{1}{2}CD = 1 \text{ cm}
\end{aligned}$$

Note that $\triangle CDE \cong \triangle ADG$.

We have $\angle DAG = \angle DCE$.

Consider $\triangle ADG$.

$$\begin{aligned}
AG^2 &= AD^2 + DG^2 \\
AG &= \sqrt{2^2 + 1^2} \\
&= \sqrt{5} \text{ cm}
\end{aligned}$$

Note that $\triangle CFG \sim \triangle ADG$.

$$\frac{\text{area of } \triangle CFG}{\text{area of } \triangle ADG} = \left(\frac{CG}{AG}\right)^2$$

$$\frac{\text{area of } \triangle CFG}{\frac{1}{2}(2)(1)} = \left(\frac{1}{\sqrt{5}}\right)^2$$

$$\text{area of } \triangle CFG = \frac{1}{5} \text{ cm}^2$$

17. B

$$\angle BAC + 2\angle CBD + 2\angle BCD = 180^\circ$$

$$\angle CBD + \angle BCD = 55^\circ$$

$$\angle BDC + \angle CBD + \angle BCD = 180^\circ$$

$$\angle BDC = 125^\circ$$

18. D

I. ✓.

$$(n - 2)180^\circ = 360^\circ$$

$$n = 4$$

The regular polygon is a square.

II. ✓.

Property of square.

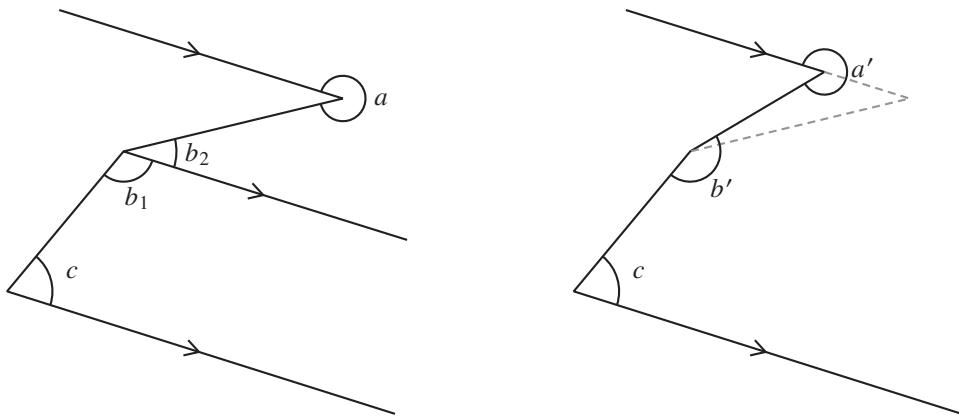
III. ✓.

Property of square.

19. A

(Left figure) Draw a parallel line passing through the vertex corresponding to angle b .

(Right figure) Move the vertex corresponding to angle a to the left.



I. ✓.

Consider the left figure.

We have $b_2 + a = 360^\circ$ and $b_1 + c = 180^\circ$.

$$\begin{aligned}a + b + c &= a + (b_1 + b_2) + c \\&= (a + b_2) + (b_1 + c) \\&= 360^\circ + 180^\circ \\&= 540^\circ\end{aligned}$$

II. ✗.

Consider the right figure. We have $a' < a$ and $b' > b$.

We have $a' - b' + c < a - b' + c < a - b + c$.

The equation $a - b + c = 270^\circ$ cannot hold in both cases.

III. ✗. Consider the right figure. We have $a' < a$ and $b' > b$.

We have $a' - b' - c < a - b' - c < a - b - c$.

The equation $a - b - c = 90^\circ$ cannot hold in both cases.

20. C

Let M be the mid-point of BC .

We have $AB = AC = 2a$ and $BM = CM = \frac{a}{2}$.

Note that $\triangle ACM \sim \triangle BCD$.

$$\begin{aligned}\frac{CD}{CM} &= \frac{BC}{AC} \\ \frac{CD}{\left(\frac{a}{2}\right)} &= \frac{a}{2a} \\ CD &= \frac{a}{4}\end{aligned}$$

$$BD = \sqrt{BC^2 - CD^2} = \sqrt{a^2 - \left(\frac{a}{4}\right)^2} = \frac{\sqrt{15}a}{4}$$

$$\text{Required area} = \frac{1}{2} \times BD \times CD$$

$$\begin{aligned}&= \frac{1}{2} \times \frac{\sqrt{15}a}{4} \times \frac{a}{4} \\&= \frac{\sqrt{15}a^2}{32}\end{aligned}$$

21. A

Since $\triangle DEF$ and $\triangle EFG$ are equilateral, we have $\angle DEF = \angle FEG = 60^\circ$.

Consider the regular pentagon $ABCDE$.

$$5\angle AED = (5 - 2)180^\circ$$

$$\angle AED = 108^\circ$$

Consider the angles at point E .

$$\angle AED + \angle DEF + \angle FEG + \angle GEA = 360^\circ$$

$$108^\circ + 60^\circ + 60^\circ + \angle GEA = 360^\circ$$

$$\angle GEA = 132^\circ$$

Note that $EG = EF = ED = EA$, we have $\angle EAG = \angle AGE$.

$$\angle EAG + \angle AGE + \angle GEA = 180^\circ$$

$$2\angle EAG + 132^\circ = 180^\circ$$

$$\angle EAG = 24^\circ$$

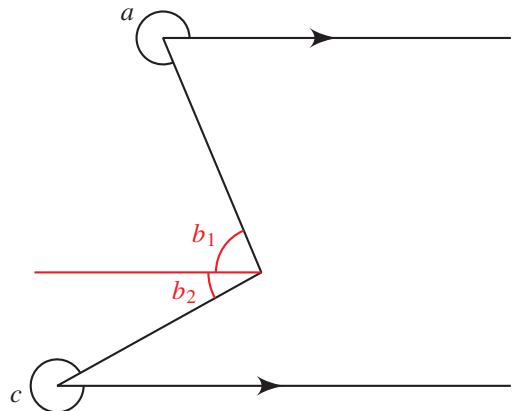
22. A

I. ✓.

Refer to the figure.

Note that $a + b_1 = 360^\circ$ and $c + b_2 = 360^\circ$.

$$\begin{aligned} a + b + c &= (a + b_1) + (b_2 + c) \\ &= 360^\circ + 360^\circ \\ &= 720^\circ \end{aligned}$$



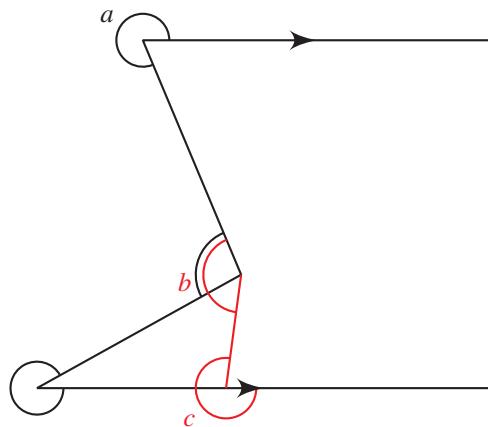
II. ✓.

Note that $a + b_1 = 360^\circ$.

$$\begin{aligned} a + b &= (a + b_1) + b_2 \\ &= 360^\circ + b_2 \\ &> 360^\circ \end{aligned}$$

III. ✗.

Refer to the figure.



Note that b becomes larger and c becomes smaller.

The result of $a + b - c$ becomes larger.

The equation cannot hold in both cases.

23. D

$$360^\circ - 44^\circ = 316^\circ$$

Required bearing is 316° .

24. B

Note that $\triangle ADE \sim \triangle ACF$.

$$\begin{aligned} \frac{AD}{AC} &= \frac{AE}{AF} \\ \frac{AD}{AD+10} &= \frac{6}{6+6} \\ AD &= 10 \text{ cm} \end{aligned}$$

In $\triangle ADE$, we have $DE = \sqrt{10^2 - 6^2} = 8 \text{ cm}$.

$$\begin{aligned} \frac{CF}{DE} &= \frac{AF}{AE} \\ \frac{CF}{8} &= \frac{6+6}{6} \\ CF &= 16 \text{ cm} \end{aligned}$$

In $\triangle BCF$, we have $BC = \sqrt{16^2 + 12^2} = 20 \text{ cm}$.

25. A

Since $BA \parallel CE$, we have $\angle BAC = \angle ACD = 65^\circ$.

$$\angle ACB + 65^\circ + 38^\circ = 180^\circ$$

$$\angle ACB = 77^\circ$$

In $\triangle EAC$, we have $\angle AEC = \angle ACE = 77^\circ$.

$$\angle EAC + \angle AEC + \angle ACE = 180^\circ$$

$$\angle EAC + 77^\circ + 77^\circ = 180^\circ$$

$$\angle EAC = 26^\circ$$

26. D

I. **X**.

The sum of each pair of interior angle and exterior angle is 180° .

$$\begin{aligned} \text{Each exterior angle} &= 180^\circ \times \frac{1}{1+5} \\ &= 30^\circ \end{aligned}$$

Sum of exterior angle of polygon is 360° .

$$\text{We have } n = \frac{360^\circ}{30^\circ} = 12 \neq 10.$$

II. **✓**.

$$\text{Each interior angle} = 180^\circ - 30^\circ$$

$$= 150^\circ$$

III. **✓**.

27. C

Since $\triangle ABC$ is equilateral, we have $\angle BAC = 60^\circ$.

Since $ACDE$ is a square, we have $\angle CAE = 90^\circ$.

Consider the regular pentagon $AEGFH$.

$$5\angle EAH = (5-2)180^\circ$$

$$\angle EAH = 108^\circ$$

Consider the angles at point A .

$$\angle BAC + \angle CAE + \angle EAH + \angle HAB = 360^\circ$$

$$60^\circ + 90^\circ + 108^\circ + \angle HAB = 360^\circ$$

$$\angle HAB = 102^\circ$$

Note that $AH = AE = AC = AB$, we have $\angle AHB = \angle ABH$.

$$\angle AHB + \angle ABH + \angle HAB = 180^\circ$$

$$2\angle AHB + 102^\circ = 180^\circ$$

$$\angle AHB = 39^\circ$$

28. C

$$\triangle AFG \sim \triangle AED$$

$$\frac{FG}{DE} = \frac{AG}{AD}$$

$$\frac{FG}{5} = \frac{\frac{1}{2}\sqrt{5^2 + 12^2}}{12}$$

$$FG = \frac{65}{24}$$

29. A

$BCDE$ is a rhombus.

$$\angle BCE = \angle DCE = 58^\circ$$

$$\angle ACB + \angle BCE + \angle DCE = 180^\circ$$

$$\angle ACB + 58^\circ + 58^\circ = 180^\circ$$

$$\angle ACB = 64^\circ$$

$$\angle BAC = \angle ACB = 64^\circ$$

$$\angle ACB + \angle BAC + \angle ACB = 180^\circ$$

$$\angle ACB + 64^\circ + 64^\circ = 180^\circ$$

$$\angle ACB = 52^\circ$$

30. D

Since $AB = BE$, we have $\angle AEB = \angle BAE$.

$$\angle AEB + \angle BAE = \angle ABF$$

$$2\angle AEB = 132^\circ$$

$$\angle AEB = 66^\circ$$

Since $AD \parallel FC$, we have $\angle EAD = \angle AEB = 66^\circ$.

Since $AE = DE$, we have $\angle ADE = \angle EAD = 66^\circ$.

$$\angle EAD + \angle ADE + \angle DEA = 180^\circ$$

$$66^\circ + 66^\circ + \angle DEA = 180^\circ$$

$$\angle DEA = 48^\circ$$

Note that BEC is a straight line.

$$\angle AEB + \angle DEA + \angle DEC = 180^\circ$$

$$66^\circ + 48^\circ + \angle DEC = 180^\circ$$

$$\angle DEC = 66^\circ$$

31. C

Since $BA \parallel CD$.

$$\begin{aligned}\angle ADC + \angle BAD &= 180^\circ \quad \text{and} \quad \angle CBA + \angle DCB = 180^\circ \\ 110^\circ + \angle BAD &= 180^\circ \quad \angle CBA + 125^\circ = 180^\circ \\ \angle BAD &= 70^\circ \quad \angle CBA = 55^\circ\end{aligned}$$

Since $AB = BD$, we have $\angle ADB = \angle BAD = 70^\circ$.

$$\begin{aligned}\angle DBA + \angle ADB + \angle BAD &= 180^\circ \\ \angle DBA + 70^\circ + 70^\circ &= 180^\circ \\ \angle DBA &= 40^\circ\end{aligned}$$

Thus, $\angle DBC = \angle CBA - \angle DBA = 55^\circ - 40^\circ = 15^\circ$.

32. B

Let $\angle BAC = x$.

Since $DE = DA$, we have $\angle AED = \angle DAE = x$.

Consider $\triangle ADE$.

$$\begin{aligned}\angle DAE + \angle AED &= \angle BDE \\ x + x &= \angle BDE \\ \angle BDE &= 2x\end{aligned}$$

Since $BD = BE$, we have $\angle DEB = \angle BDE = 2x$.

AEC is a straight line.

$$\begin{aligned}\angle BEC + \angle DEB + \angle AED &= 180^\circ \\ \angle BEC + 2x + x &= 180^\circ \\ \angle BEC &= 180^\circ - 3x\end{aligned}$$

Since $BE = BC$, we have $\angle ECB + \angle BEC = 180^\circ - 3x$.

Since $AB = AC$, we have $\angle CBA = \angle ACB = 180^\circ - 3x$.

$$\begin{aligned}\angle BAC + \angle ACB + \angle CBA &= 180^\circ \\ x + (180^\circ - 3x) + (180^\circ - 3x) &= 180^\circ \\ x &= 36^\circ\end{aligned}$$

33. C

Since $CF = CD$, we have $\angle CDF = \angle CFD$.

$$\angle CFD + \angle CDF + \angle DCF = 180^\circ$$

$$\begin{aligned}2\angle CFD + 74^\circ &= 180^\circ \\ \angle CFD &= 53^\circ\end{aligned}$$

$$\angle AFD + \angle EDF = 180^\circ$$

$$\angle AFD + 40^\circ = 180^\circ$$

$$\angle AFD = 140^\circ$$

$$\angle AFB + \angle BFC + \angle CFD + \angle AFD = 360^\circ$$

$$\angle AFB + 60^\circ + 53^\circ + 140^\circ = 360^\circ$$

$$\angle AFB = 107^\circ$$

$$\angle ABF + \angle AFB + \angle BAF = 180^\circ$$

$$\angle ABF + 107^\circ + 30^\circ = 180^\circ$$

$$\angle ABF = 43^\circ$$

34. A

I. ✓.

Since $AF = FD$, we have $\angle DAF = \angle FDA$.

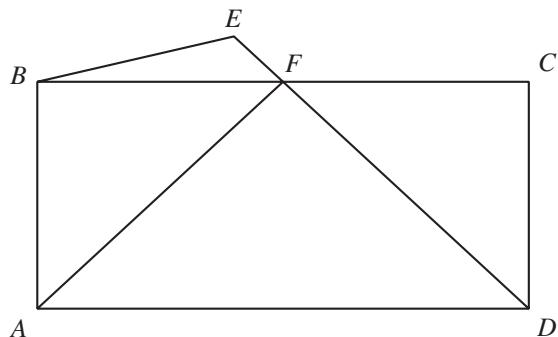
Since $BF \parallel AD$, we have $\angle BFE = \angle FDA$.

II. ✓.

We have $AF = FD$, $AB = CD$ and $\angle ABF = \angle FCD = 90^\circ$.

III. ✗.

Consider the following figure. $ABCD$ is a rectangle and $AF = DF$.



Note that $\angle DAF \neq \angle FBE$.

35. B

Note that $\triangle ABC \sim \triangle CDE$.

$$\frac{CE}{AC} = \frac{CD}{AB}$$

$$\frac{CE}{\sqrt{16^2 + 30^2}} = \frac{12}{16}$$

$$CE = 25.5 \text{ cm}$$

$$\text{Required perimeter} = 2(34 + 25.5)$$

$$= 119 \text{ cm}$$

36. D

$$\angle ABC = \frac{(5-2)180^\circ}{5} = 108^\circ$$

$$\angle BAC = \frac{180^\circ - 108^\circ}{2} = 36^\circ$$

Let F be a point due east of A .

$$\angle BAF = 90^\circ - 81^\circ = 9^\circ$$

$$\angle CAF = 36^\circ - 9^\circ = 27^\circ$$

Note that $AC \parallel ED$.

Let G be a point due west of D .

$$\angle GDE = \angle CAF = 27^\circ$$

$$\angle GDC = 27^\circ + 108^\circ = 135^\circ$$

$$135^\circ - 90^\circ = 45^\circ$$

The bearing of C from D is N45°E.

37. D

I. ✓.

$$\begin{aligned} \text{Required sum} &= (6-2)180^\circ \\ &= 720^\circ \end{aligned}$$

II. ✗.

$$\begin{aligned} \text{Each interior angle} &= \frac{720^\circ}{6} \\ &= 120^\circ \end{aligned}$$

$$\begin{aligned} \text{Each exterior angle} &= \frac{360^\circ}{6} \\ &= 60^\circ \\ &\neq \frac{120^\circ}{3} \end{aligned}$$

III. ✓.

38. A

Consider $\triangle DEF$.

$$DF^2 = EF^2 - DE^2$$

$$DF = \sqrt{65^2 - 60^2}$$

$$= 25 \text{ cm}$$

Note that $\triangle ABE \sim \triangle DFE$.

$$\frac{AB}{DF} = \frac{AE}{DE}$$

$$\frac{AB}{25} = \frac{AD + 60}{60}$$

$$AB = \frac{5AD}{12} + 25$$

The perimeter of $ABCD$ is 322 cm.

$$\begin{aligned}2(AB + AD) &= 322 \\2 \left[\left(\frac{5AD}{12} + 25 \right) + AD \right] &= 322 \\AD &= 96 \text{ cm} \\AB &= 65 \text{ cm}\end{aligned}$$

Consider $\triangle BCF$.

$$\begin{aligned}BF^2 &= BC^2 + CF^2 \\BF &= \sqrt{96^2 + (65 - 25)^2} \\&= 104 \text{ cm}\end{aligned}$$

Note that $\triangle ABG \cong \triangle EFD$, we have $BG = FD = 25 \text{ cm}$.

Thus, $GF = BF - BG = 104 - 25 = 79 \text{ cm}$.

39. B

Note that $\triangle ABE \sim \triangle DAE$.

$$\begin{aligned}\frac{AE}{DE} &= \frac{BE}{AE} \\\frac{AE}{6.25 \times \frac{16}{9+16}} &= \frac{6.25 \times \frac{9}{9+16}}{AE} \\AE^2 &= 9 \\AE &= 3 \text{ cm}\end{aligned}$$

Consider $\triangle ADE$.

$$\begin{aligned}AD^2 &= AE^2 + DE^2 \\AD &= \sqrt{3^2 + 4^2} \\&= 5 \text{ cm}\end{aligned}$$

Consider $\triangle ABE$.

$$\begin{aligned}AB^2 &= AE^2 + BE^2 \\AB &= \sqrt{3^2 + 2.25^2} \\&= 3.75 \text{ cm}\end{aligned}$$

Required perimeter = $2(AB + AD)$

$$\begin{aligned}&= 2(3.75 + 5) \\&= 17.5 \text{ cm}\end{aligned}$$

40. A

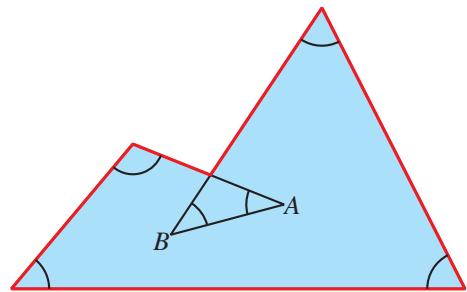
Consider the shaded pentagon as shown.

The reflex angle is equal to $\angle A + \angle B + 180^\circ$.

By considering the sum of angles of the pentagon,

$$(\text{required sum}) + 180^\circ = (5 - 2)180^\circ$$

$$\text{required sum} = 360^\circ$$



41. C

Note that $\triangle ADE \cong \triangle CDE$.

$$\angle DCE = \angle DAE = 31^\circ$$

$$\angle DEC = \angle ECF = 23^\circ$$

$$\angle CDE + \angle DCE + \angle DEF = 180^\circ$$

$$\angle CDE + 31^\circ + 23^\circ = 180^\circ$$

$$\angle CDE = 126^\circ$$

$$\angle ADE = \angle CDE = 126^\circ$$

$$\angle ADC + \angle ADE + \angle CDE = 360^\circ$$

$$\angle ADC + 126^\circ + 126^\circ = 360^\circ$$

$$\angle ADC = 108^\circ$$

$$\angle BAD + \angle ADC = 180^\circ$$

$$\angle BAD + 108^\circ = 180^\circ$$

$$\angle BAD = 72^\circ$$

42. C

Note that $\triangle ABE \sim \triangle CBD$.

$$\frac{CD}{AE} = \frac{BC}{BA}$$

$$\frac{CD}{5} = \frac{5+15}{CD}$$

$$CD^2 = 100$$

$$CD = 10 \text{ cm} \quad \text{or} \quad -10 \text{ cm} \text{ (rejected)}$$

43. C

Since $\triangle ABC$ is equilateral, we have $\angle BAC = 60^\circ$.

Since $ACDE$ is a square, we have $\angle CAE = 90^\circ$.

Consider the regular polygon $AEGHIJKLMNOP$.

$$10\angle EAM = (10 - 2)180^\circ$$

$$\angle EAM = 144^\circ$$

Consider the angles at point A.

$$\angle MAB + \angle BAC + \angle CAE + \angle EAM = 360^\circ$$

$$\angle MAB + 60^\circ + 90^\circ + 144^\circ = 360^\circ$$

$$\angle MAB = 66^\circ$$

Note that $AM = AE = AC = AB$, we have $\angle ABM = \angle BMA$.

Consider $\triangle ABM$.

$$\angle MAB + \angle ABM + \angle BMA = 180^\circ$$

$$66^\circ + 2\angle BMA = 180^\circ$$

$$\angle BMA = 57^\circ$$

Consider the angles at point M.

$$\angle BMA + \angle AML + \angle BML = 360^\circ$$

$$57^\circ + 144^\circ + \angle BML = 360^\circ$$

$$\angle BML = 159^\circ$$

44. B

$$\angle AOB = 90^\circ - 52^\circ = 38^\circ$$

$$\angle OAB = \frac{180^\circ - 38^\circ}{2} = 71^\circ$$

Required angle is S19°E.

45. B

Note that $\triangle BDC \sim \triangle BED$.

$$\frac{CD}{DE} = \frac{BC}{BD}$$

$$\frac{50}{\left(\frac{100}{3}\right)} = \frac{BC}{BD}$$

$$\frac{BC}{BD} = \frac{3}{2}$$

Note that $\triangle ABC \sim \triangle ADB$.

$$\frac{AB}{AD} = \frac{BC}{DB} = \frac{AC}{AB}$$

$$\frac{AB}{AD} = \frac{3}{2} = \frac{AC}{AB}$$

We have $AB = \frac{3AD}{2}$.

$$\frac{3}{2} = \frac{AD + 50}{\left(\frac{3AD}{2}\right)}$$

$$AD = 40$$

46. C

Since $\triangle DEF$ is equilateral, we have $\angle EDF = 60^\circ$.

Consider the regular pentagon $ABCDE$.

$$5\angle EDC = (5 - 2)180^\circ$$

$$\angle EDC = 108^\circ$$

Note that $DF = DE = DC$, we have $\angle FCD = \angle CFD$.

$$\angle FCD + \angle CFD + \angle FDC = 180^\circ$$

$$2\angle FCD + (108^\circ - 60^\circ) = 180^\circ$$

$$\angle FCD = 66^\circ$$

47. B

I. X.

It has rotational symmetry.

II. ✓.

It is an isosceles triangle but is not an equilateral triangle.

It has reflectional symmetry but not rotational symmetry.

III. X.

The remaining angle is 26° .

It has neither reflectional symmetry nor rotational symmetry.

48. B

Note that $\angle ABC = \angle ECD$ and $AB \parallel CE$.

$$\frac{\text{area of } \triangle ACE}{\text{area of } \triangle ABC} = \frac{CE}{AB}$$
$$\frac{\text{area of } \triangle ACE}{50} = \frac{4}{5}$$

$$\text{area of } \triangle ACE = 40 \text{ cm}^2$$

49. C

Note that $\triangle ABD \sim \triangle BCD$.

Let $x \text{ cm}^2$ be the area of $\triangle BCD$.

$$\frac{x}{18} = \left(\frac{4}{3}\right)^2$$

$$x = 32$$

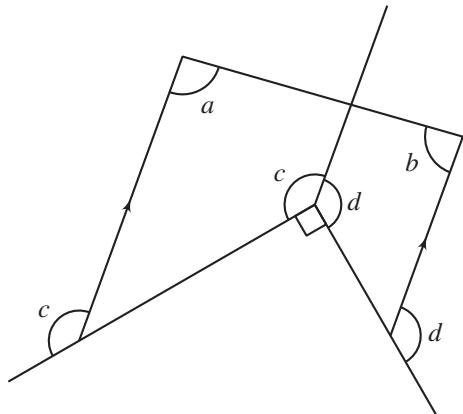
50. B

I. ✓.

Refer to the figure.

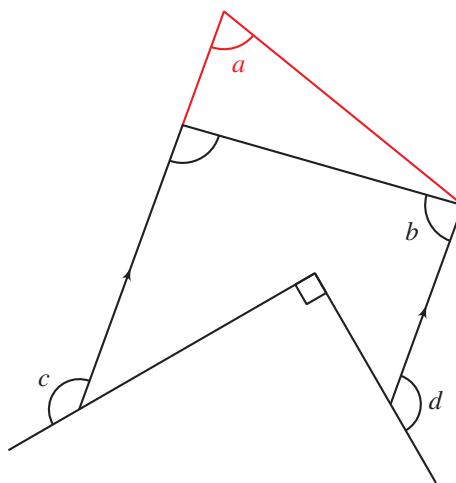
$$c + d + 90^\circ = 360^\circ$$

$$c + d = 270^\circ$$



II. ✗.

Refer to the figure.



Note that a becomes smaller and b becomes larger.

The result of $a + d$ becomes smaller, while the result of $b + c$ becomes larger.

The equation cannot hold in both cases.

III. ✓.

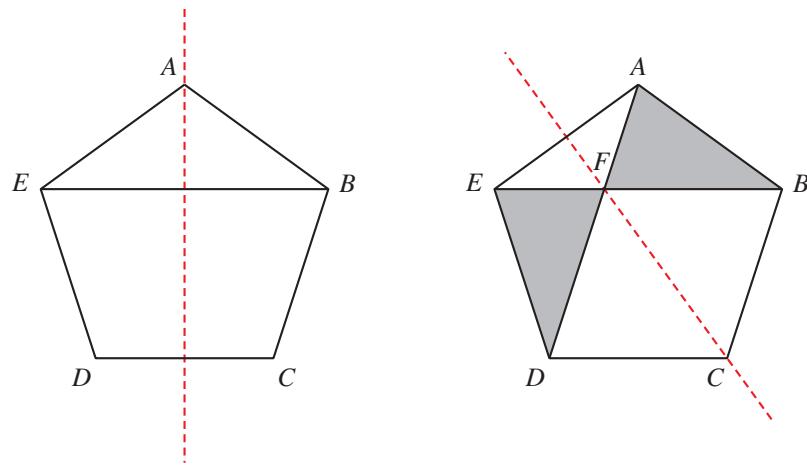
Note that $a + b = 180^\circ$ and $c + d = 270^\circ$.

$$a + b + c + d = 180^\circ + 270^\circ$$

$$= 450^\circ$$

51. D

The regular pentagon is symmetric.



I. ✓.

Consider the regular pentagon $ABCDE$.

$$5\angle CDE = (5 - 2)180^\circ$$

$$\angle CDE = 108^\circ$$

Since $DC \parallel EB$.

$$\angle BED + \angle CDE = 180^\circ$$

$$\angle BED + 108^\circ = 180^\circ$$

$$\angle BED = 72^\circ$$

II. ✓.

III. ✓.

52. A

I. ✓.

$$\text{Exterior angle} = 180^\circ - 135^\circ$$

$$= 45^\circ$$

Consider the sum of exterior angles.

$$n(45^\circ) = 360^\circ$$

$$n = 8$$

II. ✓.

III. ✗.

The number of axes of reflectional symmetry is 8.

53. C

Consider the regular decagon $ABCDEFGHIJ$.

$$10\angle JIH = (10 - 2)180^\circ$$

$$\angle JIH = 144^\circ$$

Consider the regular pentagon $HKLMI$.

$$5\angle HIM = (5 - 2)180^\circ$$

$$\angle HIM = 108^\circ$$

Since $\triangle IMN$ is equilateral, $\angle MIN = 60^\circ$.

$$\angle JIH + \angle HIM + \angle MIN + \angle NIJ = 360^\circ$$

$$144^\circ + 108^\circ + 60^\circ + \angle NIJ = 360^\circ$$

$$\angle NIJ = 48^\circ$$

Note that $JI = IH = IM = IN$, we have $\angle IJN = \angle INJ$.

$$\angle IJN + \angle INJ + \angle NIJ = 180^\circ$$

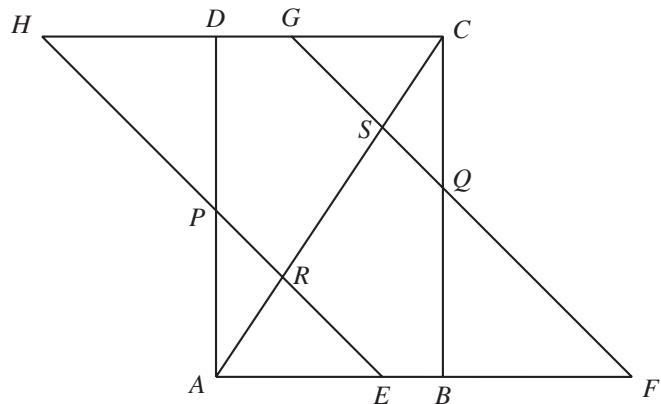
$$2\angle INJ + 48^\circ = 180^\circ$$

$$\angle INJ = 66^\circ$$

54. C

I. X.

Take $\angle GCQ = 90^\circ$ such that $ABCD$ is a rectangle, where $CD \neq CB$.



Note that $\angle GCS \neq 45^\circ$ and $\angle GCS \neq \angle QCS$.

Thus, $\triangle CGS$ and $\triangle CQS$ are not congruent triangles.

II. ✓.

Let K be the intersection of FG produced and AD produced.

$$\begin{aligned}
 \angle ABC &= \angle ADC && \text{(opp. } \angle s, \text{ //gram)} \\
 \angle FBQ &= 180^\circ - \angle ABC && \text{(adj. } \angle s \text{ on st. line)} \\
 \angle PDH &= 180^\circ - \angle ADC && \text{(adj. } \angle s \text{ on st. line)} \\
 &= \angle FBQ \\
 \angle BFQ &= \angle CGQ && \text{(alt. } \angle s, HC//AF) \\
 CG &= CQ && \text{(given)} \\
 \angle CGQ &= \angle CQG && \text{(base. } \angle s, \text{ isos. } \triangle) \\
 \angle CQG &= \angle AKF && \text{(alt. } \angle s, AK//BC) \\
 \angle DPH &= \angle AKF && \text{(alt. } \angle s, EH//FK) \\
 &= \angle BFQ \\
 \triangle BFQ &\sim \triangle DPH && \text{(AA)}
 \end{aligned}$$

III. ✓.

We have $\triangle BFQ \sim \triangle DPH$.

$$\begin{aligned}
 \angle AEP &= \angle BFQ && \text{(corr. } \angle s, EH//FG) \\
 \angle BFQ &= \angle DPH && \text{(corr. } \angle s, \cong \triangle) \\
 \angle APE &= \angle DPH && \text{(vert. opp. } \angle s) \\
 &= \angle AEP \\
 AE &= AP && \text{(sides opp. equal } \angle s)
 \end{aligned}$$

55. B

Note that $\triangle AEF \sim \triangle ADC$.

Let $x \text{ cm}^2$ be the area of $\triangle AEF$.

Then the area of $\triangle ADC$ is $(x + 21) \text{ cm}^2$.

$$\begin{aligned}
 \frac{x}{x+21} &= \left(\frac{AF}{AC}\right)^2 \\
 &= \left(\frac{4}{3+5}\right)^2
 \end{aligned}$$

$$x = 7$$

Consider $\triangle ABF$ and $\triangle AFE$.

$$\begin{aligned}
 \frac{\text{area of } \triangle ABF}{\text{area of } \triangle AFE} &= \frac{BF}{FE} \\
 \frac{\text{area of } \triangle ABF}{7} &= \frac{8}{7} \\
 \text{area of } \triangle ABF &= 8 \text{ cm}^2
 \end{aligned}$$

Since $\triangle AEF \sim \triangle ADC$.

$$\begin{aligned}\frac{AD}{AE} &= \frac{AC}{AF} \\ \frac{AD}{\left(\frac{3AF}{4}\right)} &= \frac{3+5}{4} \\ AD &= \frac{3AF}{2} \\ \frac{AF}{FD} &= \frac{1}{\frac{3}{2}-1} \\ &= 2\end{aligned}$$

Consider $\triangle ABF$ and $\triangle BDF$.

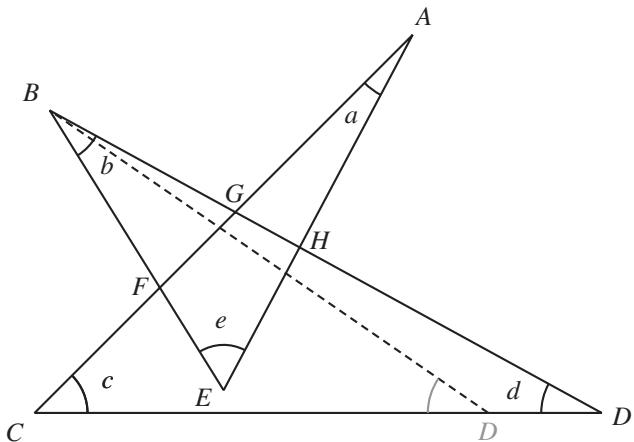
$$\begin{aligned}\frac{\text{area of } \triangle ABF}{\text{area of } \triangle BDF} &= \frac{AF}{FD} \\ \frac{8}{\text{area of } \triangle BDF} &= 2 \\ \text{area of } \triangle BDF &= 4 \text{ cm}^2\end{aligned}$$

$$\text{Required area} = 21 + 7 + 8 + 4$$

$$= 40 \text{ cm}^2$$

56. A

Consider the following figure.



Move the vertex D to the right.

As a result, angle b becomes larger while angle d becomes smaller.

I. .

The value of $c + d$ becomes smaller after the adjustment.

II. .

The value of $a + b - e$ becomes larger after the adjustment.

III. .

$$\begin{aligned}
a + b + c + d + e &= (a + e) + b + (c + d) \\
&= \angle BFG + b + \angle BGF \\
&= 180^\circ
\end{aligned}$$

57. B

Note that $\triangle APQ \sim \triangle DQC$.

$$\begin{aligned}
\frac{PQ}{QC} &= \frac{AQ}{DC} \\
&= \frac{2}{2+1} \\
&= \frac{2}{3}
\end{aligned}$$

Consider $\triangle CPQ$.

$$\tan \angle PCQ = \frac{PQ}{QC}$$

$$\angle PCQ \approx 34^\circ$$

Note that B, C, Q, P are concyclic.

We have $\angle PCQ = \angle PBQ$.

$$\tan \angle PBQ = \frac{AQ}{AB}$$

$$\tan \angle PBQ = \frac{2}{3}$$

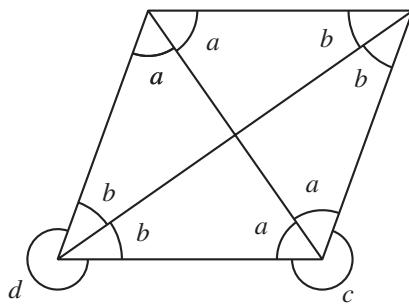
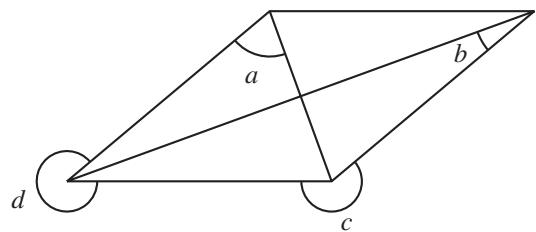
$$\angle PBQ \approx 34^\circ$$

Thus, $\angle PCQ \approx 34^\circ$.

58. D

I. **X**.

Note that $a \neq b$.



II. **✓**.

Note that rhombus is symmetrical. We have the angles in the figure above.

Consider the angles at the bottom right vertex, we have $2a + c = 360^\circ$.

III. ✓.

Note that $2a + 2b = 180^\circ$.

$$(d + 2b) + (c + 2a) = 360^\circ + 360^\circ$$

$$c + d + (2a + 2b) = 720^\circ$$

$$c + d = 540^\circ$$

59. D

Since $\triangle ABC \cong \triangle DEC$, we have $CE = BC = 5$ cm and $AC = CD = 12$ cm.

Consider $\triangle CDE$.

$$DE^2 = CE^2 + CD^2$$

$$DE = \sqrt{5^2 + 12^2}$$

$$= 13 \text{ cm}$$

Consider $\triangle ACD$.

$$AD^2 = AC^2 + CD^2$$

$$AD = \sqrt{12^2 + 12^2}$$

$$= 12\sqrt{2} \text{ cm}$$

$$\text{Required perimeter} = (12 - 5) + 13 + 12\sqrt{2}$$

$$\approx 37.0 \text{ cm}$$

60. D

$$AB = BC = 3 \text{ cm}$$

Note that $\triangle FAE \sim \triangle FBC$.

$$\frac{AE}{BC} = \frac{FA}{FB}$$

$$\frac{AE}{3} = \frac{2}{2+3}$$

$$AE = 1.2 \text{ cm}$$

$$ED = AD - AE = 3 - 1.2 = 1.8 \text{ cm}$$

61. C

Note that $\triangle ADG \cong \triangle ABE$.

We have $\angle BAE = \angle DAG = 36^\circ$ and $AG = AE$.

Since $ABCD$ is a square, we have $\angle BAD = 90^\circ$.

$$\angle DAF + \angle FAE + \angle EAB = 90^\circ$$

$$9^\circ + \angle FAE + 36^\circ = 90^\circ$$

$$\angle FAE = 45^\circ$$

Note that $\triangle AFG \cong \triangle AFE$, we have $\angle AEF = \angle AGF$.

Consider the angles at point E .

$$\angle BEA + \angle AEF + \angle CEF = 180^\circ$$

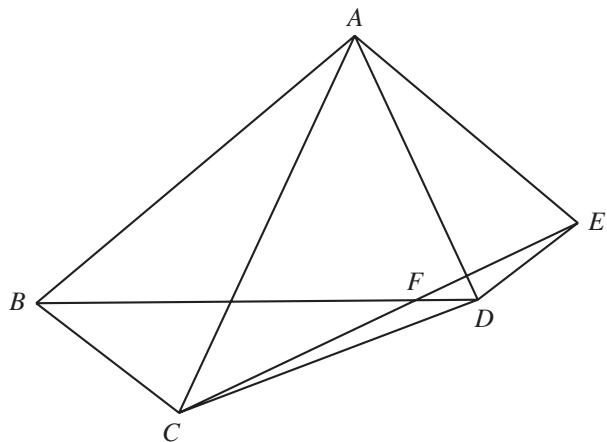
$$(180^\circ - 90^\circ - 36^\circ) + (180^\circ - 90^\circ - 36^\circ) + \angle CEF = 180^\circ$$

$$\angle CEF = 72^\circ$$

62. B

I. **X**.

Refer to the figure. We have $AB = AC$, $AD = AE$ and $\angle BAC = \angle DAE$.



Note that $\triangle ABC$ and $\triangle ADE$ are not congruent.

II. **✓**.

$$AB = AC \quad (\text{given})$$

$$AD = AE \quad (\text{given})$$

$$\angle BAC = \angle DAE \quad (\text{given})$$

$$\angle BAD = \angle BAC + \angle CAD$$

$$\angle CAE = \angle DAE + \angle CAD$$

$$= \angle BAC + \angle CAD$$

$$= \angle BAD$$

$$\triangle ABD \cong \triangle ACE \quad (\text{SAS})$$

III. **X**.

Refer to the figure above.

Note that $\triangle BFC$ and $\triangle EFD$ are not congruent.

63. A

I. ✓.

$$\text{Interior angle} = \frac{(16-2)180^\circ}{16} \\ = 157.5^\circ$$

II. ✓.

III. ✗.

The number of axes of reflectional symmetry is 16.

64. C

$$(n-2)180^\circ = 12 \times \frac{360^\circ}{n}$$

$$n^2 - 2n - 24 = 0$$

$$n = 6 \quad \text{or} \quad -4 \quad (\text{rejected})$$

A. ✗.

B. ✗.

$$\text{Each interior angle} = \frac{(6-2)180^\circ}{6} = 120^\circ$$

C. ✓.

$$\text{Number of diagonals} = C_2^6 - 6 = 9$$

D. ✗.

Number of folds of rotational symmetry is 6.

65. D

$$\angle BAC + 34^\circ + 72^\circ = 180^\circ$$

$$\angle BAC = 74^\circ$$

$$\angle ABC = \frac{180^\circ - 74^\circ}{2} = 53^\circ$$

$$53^\circ - 34^\circ = 19^\circ$$

The bearing of C from B is S 19° W.