

1. (a) $f(x) = (8x^2 + ax + 8)(3x^2 + 7x + r) + bx + c$ 1M
 $= 24x^4 + (56 + 3a)x^3 + \dots$

$56 + 3a = 47$ 1M

$a = -3$ 1A

(b) (i) Let $g(x) = A(8x^2 + ax + 8) + bx + c$, where A is a constant. 1M

$$\begin{aligned}f(x) - g(x) &= [(8x^2 + ax + 8)(3x^2 + 7x + r) + bx + c] - [A(8x^2 + ax + 8) + bx + c] \\&= (8x^2 + ax + 8)(3x^2 + 7x + r - A)\end{aligned}$$

Thus, $f(x) - g(x)$ is divisible by $8x^2 + ax + 8$. 1

(ii) $f(x) - g(x) = 0$

$$(8x^2 - 3x + 8)(3x^2 + 7x + r - A) = 0$$

$$8x^2 - 3x + 8 = 0 \quad \text{or} \quad 3x^2 + 7x + r - A = 0 \quad 1M$$

For $8x^2 - 3x + 8 = 0$,

$\Delta = (-3)^2 - 4(8)(8) = -247 < 0$. The equation has no real roots. 1M

For $3x^2 + 7x + r - A = 0$, the equation has at most 2 real roots.

Thus, $f(x) - g(x) = 0$ has at most 2 real roots.

The claim is disagreed. 1A

2. (a) Let $f(x) = (x^2 + x - 1)(Ax + B)$, where A and B are constants. 1M

$$\begin{cases} f(-7) = -123 = (49 - 7 - 1)(-7A + B) \\ f(3) = 297 = (9 + 3 - 1)(3A + B) \end{cases} \quad 1M$$

Solving, we have $A = 3$ and $B = 18$.

Required quotient is $3x + 18$. 1A

(b) $f(x) = 0$

$$(x^2 + x - 1)(3x + 18) = 0$$

$$3(x^2 + x - 1)(x + 6) = 0$$

$$x = -6 \quad \text{or} \quad x^2 + x - 1 = 0 \quad 1M$$

For $x^2 + x - 1 = 0$, $x \approx 0.618$ or $x \approx -1.62$. 1M

The equation $f(x) = 0$ has only one positive root.

The claim is not correct. 1A

3. (a) $f(x) = (x - 2)(x^2 - 3x + 4) + r$ 1A

$$f(1) = 0 \quad 1M$$

$$(1 - 2)(1 - 3 + 4) + r = 0$$

$$r = 2 \quad 1A$$

(b) $f(x) = (x - 2)(x^2 - 3x + 4) + 2$

$$= x^3 - 5x^2 + 10x - 6$$

$$= (x - 1)(x^2 - 4x + 6) \quad 1M$$

We have $g(x) = x^2 - 4x + 6$. 1A

Consider the equation $x^2 - 4x + 6 = 0$.

$$\begin{aligned}\Delta &= 4^2 - 4(1)(6) & 1M \\ &= -8 \\ &< 0\end{aligned}$$

The equation has no real roots.

The claim is agreed. 1A

4. (a) $f(x) = (x + 2)(ax^2 + bx + c)$
 $= ax^3 + (2a + b)x^2 + (2b + c)x + 2c$
We have $a = -2$, $2a + b = 0$ and $2c = -6$. 1M

Solving, we have $a = -2$, $b = 4$ and $c = -3$. 3A

(b) $0 = (x + 2)(-2x^2 + 4x - 3)$
 $x = -2$ or $-2x^2 + 4x - 3 = 0$ 1M
For $-2x^2 + 4x - 3 = 0$, we have
$$\begin{aligned}\Delta &= 4^2 - 4(-2)(-3) & 1M \\ &= -8 \\ &< 0\end{aligned}$$

The equation $-2x^2 + 4x - 3 = 0$ has no real roots and hence no irrational roots.

Note that -2 is not an irrational number.

The claim is disagreed. 1A

5. (a) Let $q(x) = Ax + B$, where A and B are constants.

$$\begin{aligned}g(x) &= f(x)(Ax + B) + (2Ax + 2B) & 1M \\ &= (21x^3 - 2x^2 - 8x - 2)(Ax + B) + 2Ax + 2B\end{aligned}$$

Compare the coefficients of x^3 and x .

$$\begin{cases} -33 = 21B - 2A \\ 8 = -8B - 2A + 2A \end{cases} \quad 1M$$

Solving, we have $A = 6$ and $B = -1$.

We have quotient = $6x - 1$ and remainder = $12x - 2$. 1A

(b)
$$\begin{aligned}g(x) &= 0 \\ (6x - 1)(21x^3 - 2x^2 - 8x - 2) + 2(6x - 1) &= 0 \\ (6x - 1)(21x^3 - 2x^2 - 8x) &= 0 & 1M \\ x(6x - 1)(3x - 2)(7x + 4) &= 0 & 1M \\ x = 0 \quad \text{or} \quad \frac{1}{6} \quad \text{or} \quad \frac{2}{3} \quad \text{or} \quad -\frac{4}{7} & & 1M\end{aligned}$$

All the roots are rational numbers.

The equation has no irrational roots.

The claim is not correct. 1A

6. (a) Let $g(x) = (2x^2 - 9x + 14)(Ax + B) + 3x - 1$, where A and B are constants.

1M

$$\begin{cases} 33 = [2(2)^2 - 9(2) + 14](2A + B) + 3(2) - 1 \\ 21 = [2(-1)^2 - 9(-1) + 14](-A + B) + 3(-1) - 1 \end{cases}$$

1M

Solving, we have $A = 2$ and $B = 3$.

Required quotient is $2x + 3$.

1A

$$(b) \quad (2x^2 - 9x + 14)(2x + 3) + 3x - 1 = 2(x + 2)(3x - 1)$$

1M

$$(2x^2 - 9x + 14)(2x + 3) + (3x - 1)[1 - 2(x + 2)] = 0$$

1M

$$(2x + 3)[(2x^2 - 9x + 14) - (3x - 1)] = 0$$

1M

$$(2x + 3)(2x^2 - 12x + 15) = 0$$

$$2x + 3 = 0 \quad \text{or} \quad 2x^2 - 12x + 15 = 0$$

$$x = -\frac{3}{2}$$

$$x = \frac{12 \pm \sqrt{12^2 - 4(2)(15)}}{2(2)}$$

1M

$$= \frac{6 \pm \sqrt{6}}{2}$$

$\frac{6 \pm \sqrt{6}}{2}$ are not rational numbers.

The claim is disagreed.

1A

7. (a) $f(x) = 2(x - 2)(x^2 - 4x + 1) + ax + b$

1M

$$= 2x^3 - 12x^2 + (18 + a)x + (b - 4)$$

We have $2b = -12$, $18 + a = 7a$ and $c = b - 4$.

1M

Solving, we have $a = 3$, $b = -6$ and $c = -10$.

1A

$$(b) 0 = 2(x - 2)(x^2 - 4x + 1) + 3x - 6$$

1M

$$= (x - 2)[2(x^2 - 4x + 1) + 3]$$

$$= (x - 2)(2x^2 - 8x + 5)$$

$$x = 2 \quad \text{or} \quad \frac{8 \pm \sqrt{8^2 - 4(2)(5)}}{2(2)}$$

$$= 2 \quad \text{or} \quad \frac{4 \pm \sqrt{6}}{2}$$

1A

There is 1 rational root.

1A

8. (a) $f(-1) = 0 = -4(-1)^3 + (a + 2)(-1)^2 + 2(-1) - 3b$

1M

$$a - 3b = -4$$

$$f(2) = 9 = -4(2)^3 + (a + 2)(2)^2 + 2(2) - 3b$$

1M

$$4a - 3b = 29$$

Solving, we have $a = 11$ and $b = 5$.

1A

$$(b) f(x) = -4x^3 + 13x^2 + 2x - 15$$

1M

$$= (-x^2 + 2x + 3)(4x - 5)$$

So, $g(x) = 4x - 5$.

$$\begin{aligned} kx(4x - 5) &= (-x^2 + 2x + 3)(4x - 5) & 1M \\ (4x - 5)(x^2 + (k - 2)x - 3) &= 0 & 1M \\ x = \frac{5}{4} \quad \text{or} \quad x^2 + (k - 2)x - 3 &= 0 \end{aligned}$$

$\Delta = (k - 2)^2 - 4(1)(-3) = (k - 2)^2 + 12 > 0$ for all real values of k .

$x^2 + (k - 2)x - 3 = 0$ has two distinct real roots.

The claim is agreed. 1A

9. (a) $f(x) = (x^2 - 1)(x + h) + 4x + k$ 1A

$$\begin{aligned} f(-1) &= (1 - 1)(-1 + h) - 4 + k = 0 & 1M \\ k &= 4 & 1A \end{aligned}$$

(b) $(x^2 - 1)(x + h) + 4x + 4 = 0$

$$(x + 1)(x - 1)(x + h) + 4(x + 1) = 0$$

$$(x + 1)[(x - 1)(x + h) + 4] = 0$$

$$(x + 1)[x^2 + (h - 1)x + (4 - h)] = 0$$

$$x = -1 \quad \text{or} \quad x^2 + (h - 1)x + (4 - h) = 0 \quad 1M$$

Suppose the equation $x^2 + (h - 1)x + (4 - h) = 0$ has repeated roots.

$$\begin{aligned} \Delta &= (h - 1)^2 - 4(4 - h) = 0 & 1M \\ h^2 + 2h - 15 &= 0 \\ h &= -5 \quad \text{or} \quad 3 \end{aligned}$$

Suppose $x = -1$ is a root of $x^2 + (h - 1)x + (4 - h) = 0$.

$$\begin{aligned} (-1)^2 + (h - 1)(-1) + (4 - h) &= 0 & 1M \\ h &= 3 \end{aligned}$$

When $h = -5$, the equation $f(x) = 0$ has two distinct roots.

When $h = 3$, the equation $f(x) = 0$ has repeated root $x = -1$ only.

Thus, the possible value of h is -5 . 1A

10. (a) $p(x) = (x^2 - 2x + 2)(10x^2 + ax - 19) + (bx + 41)$ 1M

Since $p(x)$ is divisible by $(x + 1)(x - 1)$, we have $p(1) = p(-1) = 0$.

$$\begin{cases} 0 = (1 - 2 + 2)(10 + a - 19) + b + 41 \\ 0 = (1 + 2 + 2)(10 - a - 19) - b + 41 \end{cases} \quad 1M$$

Solving, we have $a = 7$ and $b = -39$. 1A+1A

(b) $0 = p(x)$

$$0 = (x^2 - 2x + 2)(10x^2 + 7x - 19) - 39x + 41$$

$$= 10x^4 - 13x^3 - 13x^2 + 13x + 3$$

$$= (x^2 - 1)(10x^2 - 13x - 3)$$

$$= (x + 1)(x - 1)(2x - 3)(5x + 1)$$

$$x = \pm 1 \quad \text{or} \quad \frac{3}{2} \quad \text{or} \quad -\frac{1}{5}$$

The equation $p(x) = 0$ has 4 rational roots.

1M

1M

1A

11. (a) $f(x) = (x - 1)[x^2 + (h - 1)x - h] + k$ We have $f(-h) = 5$.

1M

$$(-h - 1)(h^2 - (h - 1)h - h) + k = 5$$

1M

$$k = 5$$

1A

We have $f(2) = 0$.

$$(2 - 1)(2^2 + (h - 1)2 - h) + 5 = 0$$

$$h = -7$$

1A

Thus, $h = -7$ and $k = 5$.

(b) $f(x) = 0$

$$(x - 1)(x^2 - 8x + 7) + 5 = 0$$

$$x^3 - 9x^2 + 15x - 2 = 0$$

1A

$$(x - 2)(x^2 - 7x + 1) = 0$$

1M

$$x = 2 \quad \text{or} \quad x^2 - 7x + 1 = 0$$

Consider the equation $x^2 - 7x + 1 = 0$.

$$x = \frac{7 \pm \sqrt{7^2 - 4(1)(1)}}{2}$$

$$x = \frac{7 \pm 3\sqrt{5}}{2}$$

The roots are irrational numbers.

The claim is disagreed.

1A

12. (a) $f(x) = (x^2 + cx + c)(4x - 8) + 17x + 29$

$$f\left(-\frac{3}{2}\right) = 0$$

$$\left(\frac{9}{4} - \frac{3c}{2} + c\right)(-6 - 8) - \frac{51}{2} + 29 = 0$$

1M

$$c = 4$$

1A

(b) $f(x) = 0$

$$(x^2 + 4x + 4)(4x - 8) + 17x + 29 = 0$$

$$4x^3 + 8x^2 + x - 3 = 0$$

$$(2x + 3)(2x^2 + x - 1) = 0$$

$$(2x + 3)(x + 1)(2x - 1) = 0$$

$$x = -\frac{3}{2} \quad \text{or} \quad -1 \quad \text{or} \quad \frac{1}{2}$$

$-\frac{3}{2}, -1$ and $\frac{1}{2}$ are rational numbers.

There are 3 rational roots.

13. (a) $p(x) = (x + r)(x^2 - rx + 2r^2) - 4r^3$

$$p(r) = (r + r)(r^2 - r^2 + 2r^2) - 4r^3$$

$$= 4r^3 - 4r^3$$

$$= 0$$

$p(x)$ is divisible by $x - r$.

(b) $0 = (x + r)(x^2 - rx + 2r^2) - 4r^3$

$$= x^3 + r^2x - 2r^3$$

$$= (x - r)(x^2 + rx + 2r^2)$$

$$x = r \quad \text{or} \quad x^2 + rx + 2r^2 = 0$$

When $x^2 + rx + 2r^2 = 0$, $\Delta = r^2 - 4(1)(2r^2) = -7r^2 < 0$.

The roots of the equation $x^2 + rx + 2r^2 = 0$ are not real.

The claim is disagreed.

14. (a) Let $h(x) = g(x)(Ax + B) + Cx^2 + Dx + E$, where A, B, C, D and E are constants.

Compare the coefficients of x^4 .

$$12 = 6A$$

$$A = 2$$

Compare the coefficients of x^3 .

$$8 = 6B + A$$

$$B = 1$$

Required quotient is $2x + 1$.

(b) $h(x) = g(x)(2x + 1) + R(x)$

$$g(x) = 6x^3 + x^2 - 18x + 8$$

$$= (2x - 1)(3x^2 + 2x - 8)$$

$$= (2x - 1)(3x - 4)(x + 2)$$

Note that $R(-2) = 0$ and $R\left(\frac{1}{2}\right) = 0$.

We have $R(x) = r(x+2)(2x-1)$ for some constant r .

1M

$$h(x) = 0$$

$$(2x-1)(3x-4)(x+2)(2x+1) + r(x+2)(2x-1) = 0$$

$$(2x-1)(x+2)[(3x-4)(2x+1) + r] = 0$$

1M

We have $x = \frac{1}{2}$ or $x = -2$ or $(3x-4)(2x+1) + r = 0$.
 -2 is a negative root of $h(x) = 0$.

The claim is disagreed.

1A

15. (a) $f(-1) = h = -h - 1 + 9 + k$

1M

$$2h - k = 8$$

$$0 = f\left(\frac{1}{2}\right) = \frac{h}{8} - \frac{1}{4} - \frac{9}{2} + k$$

1M

$$h + 8k = 38$$

Solving, we have $h = 6$ and $k = 4$.

1A+1A

(b) $f(x) = 6$

$$6x^3 - x^2 - 9x - 2 = 0$$

$$(x+1)(6x^2 - 7x - 2) = 0$$

1M

$$x = -1 \quad \text{or} \quad \frac{7 \pm \sqrt{7^2 - 4(6)(-2)}}{2(6)}$$

1M

$$= -1 \quad \text{or} \quad \frac{7 \pm \sqrt{97}}{12}$$

There are some irrational roots in $f(x) = 6$.

The claim is disagreed.

1A

16. (a) $f(12) = 12^3 - 96(12) - 576 = 0$

1M

$$f(x) = (x-12)(x^2 + 12x + 48)$$

1A

(b) (i) Volume of $A = \frac{1}{3}\pi(9)^2(18)$

$$= 486\pi \text{ cm}^3$$

Let h_A cm be the depth of water in container A after 44 seconds.

$$\left(\frac{h_A}{18}\right)^3 = \frac{35 \times 2\pi}{486\pi}$$

$$h_A^3 = 840$$

$$h_A \approx 9.44$$

1A

Let h_B cm be the depth of water in container B after 44 seconds.

$$\pi 4^2 h_B = 44 \times \pi$$

$$h_B = 2.75$$

1A

$$< h_A$$

The water level in container A is higher.

1A

(ii) Let h cm be the equal water level in both container.

Consider the time taken to reach equal water level in both containers.

$$\frac{486\pi \left(\frac{h}{18}\right)^3 - 35 \times 2\pi}{\pi} = \frac{\pi 4^2(h) - 44\pi}{2\pi}$$

1M

$$\frac{h^3}{12} - 70 = 8h - 22$$

$$h^3 - 96h - 576 = 0$$

$$(h - 12)(h^2 + 12h + 48) = 0$$

1M

$$h = 12 \quad \text{or} \quad h^2 + 12h + 48 = 0$$

Consider the equation $h^2 + 12h + 48 = 0$.

$$\Delta = 12^2 - 4(1)(48)$$

$$= -48$$

$$< 0$$

The equation has no real roots.

Required depth of water is 12 cm.

1A

17. (a) Let $f(x) = (x^2 - 4)(Ax + B) + kx + 24$, where A and B are constants.

1M

$$f(2) = 0$$

$$(4 - 4)(2A + B) + 2k + 24 = 0$$

1M

$$k = -12$$

1A

(b) $f(0) = 8$

$$(0 - 4)(0 + B) + 0 + 24 = 8$$

1M

$$B = 4$$

1A

$$f(-1) = 0$$

$$(1 - 4)(-A + 4) + 12 + 24 = 0$$

$$A = -8$$

1A

$$f(x) = 0$$

$$(x^2 - 4)(-8x + 4) - 12x + 24 = 0$$

$$(x + 2)(x - 2)(-8x + 4) - 12(x - 2) = 0$$

$$(x - 2)[(x + 2)(-8x + 4) - 12] = 0$$

$$(x - 2)(-8x^2 - 12x - 4) = 0$$

$$-4(x - 2)(x + 1)(2x + 1) = 0$$

1M

$$x = 2 \quad \text{or} \quad -1 \quad \text{or} \quad -\frac{1}{2}$$

$-\frac{1}{2}$ is not an integer.

The claim is not correct.

1A

18. (a) Consider the constant term of $f(x)$.

$$0 - (1)(-1) + b = 15$$

$$b = 14$$

1A

We have $f\left(\frac{3}{2}\right) = 0$.

$$\frac{27}{2} - \left(\frac{3a}{2} + 1\right)(6 - 1) + 14 = 0$$

1M

$$a = 3$$

1A

$$(b) \quad f(x) = 4x^3 - (3x + 1)(4x - 1) + 14$$

$$= 4x^3 - 12x^2 - x + 15$$

1M

$$= (2x - 3)(2x^2 - 3x - 5)$$

1M

$$f(x) + g(x) = 0$$

$$(2x - 3)(2x^2 - 3x - 5) + (2x^2 - 3x - 5)(x + 2) + 3x - 1 = 0$$

1M

$$(2x^2 - 3x - 5)(3x - 1) + 3x - 1 = 0$$

$$(3x - 1)(2x^2 - 3x - 4) = 0$$

1M

$$x = \frac{1}{3} \quad \text{or} \quad 2x^2 - 3x - 4 = 0$$

Consider the equation $2x^2 - 3x - 4 = 0$.

$$x = \frac{3 \pm \sqrt{3^2 - 4(2)(-4)}}{2(2)}$$

$$x = \frac{3 \pm \sqrt{41}}{4}$$

The roots are not rational.

The equation $f(x) + g(x) = 0$ has 1 rational root.

1A

19. (a)

$$f(-1) = g(-1)$$

$$a(-1)^3 - b(-1)^2 - (-1) + 2 = (-1)^3 + a(-1)^2 - b$$

1M

$$-a - b + 3 = -1 + a - b$$

$$a = 2$$

1A

$$f(1) = 0$$

$$2(1)^3 - b(1)^2 - 1 + 2 = 0$$

1M

$$b = 3$$

1A

$$(b) \quad f(x) - 2g(x) = -1$$

$$7x^2 + x - 9 = 0$$

1M

$$x = \frac{-1 \pm \sqrt{1^2 - 4(7)(-9)}}{2(7)}$$

$$= \frac{-1 \pm \sqrt{253}}{14}$$

The roots are irrational.

The claim is agreed.

1A

20. (a) Let $f(x) = (x^2 - 4)(Ax + B) + kx - 12$, where A and B are constants.

1M

$$f(2) = 0$$

$$(4 - 4)(2A + B) + 2k - 12 = 0$$

1M

$$k = 6$$

1A

(b) $f(0) = 20$

$$(0 - 4)(0 + B) + 0 - 12 = 20$$

1M

$$B = -8$$

1A

$$f(-3) = -40$$

$$(9 - 4)(-3A - 8) + 6(-3) - 12 = -40$$

$$A = -2$$

1A

$$f(x) = 0$$

$$(x^2 - 4)(-2x - 8) + 6x - 12 = 0$$

$$(x + 2)(x - 2)(-2x - 8) + 6(x - 2) = 0$$

$$(x - 2)[(x + 2)(-2x - 8) + 6] = 0$$

$$2(x - 2)(-x^2 - 6x - 5) = 0$$

$$-2(x - 2)(x + 1)(x + 5) = 0$$

1M

$$x = 2 \quad \text{or} \quad -1 \quad \text{or} \quad -5$$

All the roots are integers.

The claim is correct.

1A

21. (a) Let $f(x) = (x^2 - 4)Q(x) + kx + 64$, where $Q(x)$ is a polynomial.

1M

$$f(2) = 0$$

$$(4 - 4)Q(2) + 2k + 64 = 0$$

$$k = -32$$

1A

We have $f(-2) = 0 + 64 + 64 = 128$.

$$(-2)(-6 + 5)^2 - 2p + q = 128$$

1M

$$-2p + q = 130$$

We have $f(2) = 0$.

$$2(6 + 5)^2 + 2p + q = 0$$

$$2p + q = -242$$

Solving, we have $p = -93$ and $q = -56$.

1A

(b) $f(x) = 0$

$$x(3x + 5)^2 - 93x - 56 = 0$$

$$9x^3 + 30x^2 - 68x - 56 = 0$$

$$(x - 2)(9x^2 + 48x + 28) = 0$$

$$(x - 2)(3x + 2)(3x + 14) = 0$$

$$x = 2 \quad \text{or} \quad -\frac{2}{3} \quad \text{or} \quad -\frac{14}{3}$$

The equation $f(x) = 0$ has 3 rational roots.

22. (a) Let $p(x) = (x^3 - 6x^2 - 3x + 16)(Ax + B) + 11x - 28$, where A and B are non-zero constants. 1A

$$\begin{cases} 15 = (1 - 6 - 3 + 16)(A + B) + 11 - 28 \\ 0 = (216 - 216 - 18 + 16)(6A + B) + 66 - 28 \end{cases}$$

Solving, we have $A = 3$ and $B = 1$. 1A

$$\text{Thus, } p(x) = (x^3 - 6x^2 - 3x + 16)(3x + 1) + 11x - 28.$$

(b) $p(-2) = (-8 - 24 + 6 + 17)(-6 + 1) - 22 - 28$
 $= 0$

Thus, $x + 2$ is a factor of $p(x)$. 1

(c) $0 = (x^3 - 6x^2 - 3x + 16)(3x + 1) + 11x - 28$
 $0 = 3x^4 - 17x^3 - 15x^2 + 56x - 12$
 $0 = (x + 2)(x - 6)(3x^2 - 5x + 1)$
 $x = -2 \quad \text{or} \quad 6 \quad \text{or} \quad 3x^2 - 5x + 1 = 0$

For $3x^2 - 5x + 1 = 0$,

$$\begin{aligned} x &= \frac{5 \pm \sqrt{5^2 - 4(3)(1)}}{2(3)} \\ &= \frac{5 \pm 13}{6} \end{aligned}$$

Note that $\frac{5 + \sqrt{13}}{6}$ is irrational.

The claim is disagreed. 1A

(d) $6, -2, 0, \frac{5}{3}$ 1A

23. (a) Let $f(x) = (x^2 + 6x - 7)(Ax + B)$, where A and B are constants. 1M

$$\begin{cases} f(-1) = 96 = (1 - 6 - 7)(-A + B) \\ f(2) = 9 = (4 + 12 - 7)(2A + B) \end{cases}$$

Solving, we have $A = 3$ and $B = -5$.

The quotient is $3x - 5$. 1A

(b) $(x^2 + 6x - 7)(3x - 5) = 2x + 14$

$(x + 7)(x - 1)(3x - 5) - 2(x + 7) = 0$

1M

$(x + 7)[(x - 1)(3x - 5) - 2] = 0$

$(x + 7)(3x^2 - 8x + 3) = 0$

1A

$$x = -7 \quad \text{or} \quad \frac{8 \pm \sqrt{8^2 - 4(3)(3)}}{2(3)}$$

$$= -7 \quad \text{or} \quad \frac{4 \pm \sqrt{7}}{3}$$

Since $\frac{4 \pm \sqrt{7}}{3}$ is irrational, the claim is agreed.

1A

24. (a) Let $f(x) = (3 - 4x - x^2)(Ax + B) + (35x - 28)$, where A and B are constants.

1M

$$\begin{aligned} f(x) &= (3 - 4x - x^2)(Ax + B) + (35x - 28) \\ &= -Ax^3 + (-4A - B)x^2 + (3A - 4B + 35)x + (3B - 28) \end{aligned}$$

We have $3A - 4B + 35 = -1$ and $3B - 28 = -10$.

1M

Solving, we have $A = -4$ and $B = 6$.

1A

We have $m = -A = 4$ and $n = -4A - B = 10$.

(b) $f(-2) = 4(-2)^3 + 10(-2)^2 - (-2) - 10$
 $= 0$

1

Thus, $x + 2$ is a factor of $f(x)$.

(c) $f(x) = 0$

$(x + 2)(4x^2 + 2x - 5) = 0$

1M

$$x = -2 \quad \text{or} \quad 4x^2 + 2x - 5 = 0$$

$$x = -2 \quad \text{or} \quad 0.896 \quad \text{or} \quad -1.40$$

1M

All the roots of the equation $f(x) = 0$ are real numbers.

The claim is agreed.

1A

25. D

$$a \left(\frac{b}{a} \right)^2 - b \left(\frac{b}{a} \right) + c = 0$$

$$\frac{b^2}{a} - \frac{b^2}{a} + c = 0$$

$$c = 0$$

$$\text{Remainder} = a \left(-\frac{b}{a} \right)^2 - b \left(-\frac{b}{a} \right)$$

$$= \frac{b^2}{a} + \frac{b^2}{a}$$

$$= \frac{2b^2}{a}$$

26. D

$$(-3)^3 + 27(-3)^2 + k(-3) - 3 = 0$$

$$-3k + 213 = 0$$

$$k = 71$$

27. D

Let $f(x) = x^4 - 9x^2 - 24x - 16$.

Note that $f(-1) = f(4) = 0$.

$(x + 1)$ and $(x - 4)$ are factors of $f(x)$.

Thus, $x^4 - 9x^2 - 24x - 16 = (x^2 + 3x + 4)(x + 1)(x - 4)$.

28. A

$$f(2) = 0$$

$$8 - 8 + 2 + k = 0$$

$$k = -2$$

$$\text{Remainder} = f(-1)$$

$$= -1 - 2 - 1 - 2$$

$$= -6$$

29. D

$$f(5) = 0 = 2(5)^2 - 13(5) + k$$

$$k = 15$$

$$\begin{aligned}\text{Required remainder} &= f\left(-\frac{1}{2}\right) \\ &= 2\left(-\frac{1}{2}\right)^2 - 13\left(-\frac{1}{2}\right) + 15 \\ &= 22\end{aligned}$$

30. A

$$p(-k) = -k^3 + k^3 - 4k - 16 = 0$$

$$k = -4$$

$$\text{Remainder} = (-2)^3 - 4(-2)^2 + 4(-2) - 16$$

$$= -48$$

31. C

$$f\left(\frac{1}{p}\right) = 0$$

$$\frac{48}{p^4} - 3 = 0$$

$$p^4 = 16$$

$$\text{Remainder} = f(-p)$$

$$= 48(-p)^4 - 3$$

$$= 48(16) - 3$$

$$= 765$$

32. C

$$a\left(-\frac{1}{3}\right)^8 + 81\left(-\frac{1}{3}\right)^3 + b\left(-\frac{1}{3}\right)^2 - 3\left(-\frac{1}{3}\right) + c = 0$$

$$\frac{a}{6561} + \frac{b}{9} + c - 2 = 0$$

$$\frac{a}{6561} + \frac{b}{9} + c = 2$$

$$\text{Remainder} = g\left(\frac{1}{3}\right)$$

$$= a\left(\frac{1}{3}\right)^8 + 81\left(\frac{1}{3}\right)^3 + b\left(\frac{1}{3}\right)^2 - 3\left(\frac{1}{3}\right) + c$$

$$= \frac{a}{6561} + \frac{b}{9} + c + 2$$

$$= (2) + 2$$

$$= 4$$

33. C

We have $g(x) = (x^2 - 5x + 2)(2x + 3) + ax + 3$.

$$g(1) = 0$$

$$(1 - 5 + 2)(2 + 3) + a + 3 = 0$$

$$a = 7$$

$$\text{Remainder} = g\left(-\frac{1}{2}\right)$$

$$= \left(\frac{1}{4} + \frac{5}{2} + 2\right)(-1 + 3) - \frac{7}{2} + 3$$

$$= 9$$

34. D

$$(-2)^3 - 6(-2)^2 - 3(-2) + k = 5$$

$$k = 31$$

35. A

$$(1)^8 + a(1)^7 + b = 2a$$

$$1 + a + b = 2a$$

$$b = a - 1$$

$$\text{Remainder} = (-1)^8 + a(-1)^7 + (a - 1)$$

$$= 0$$

36. D

Let $f(x) = (x^2 - 4)Q(x) + Ax + B$, where $Q(x)$ is a polynomial, A and B are constants.

$$\begin{cases} f(-2) = 0 = -2A + B \\ f(2) = 4 = 2A + B \end{cases}$$

Solving, we have $A = 1$ and $B = 2$.

Required remainder is $x + 2$.

37. C

Note that $f(3) = (3 - 1)^3 - 6(3 - 1) + 4 = 0$.

Thus, $x - 3$ is a factor of $f(x)$.

38. A

$$a(3)^3 - 2a(3)^2 - 27 = 0$$

$$9a - 27 = 0$$

$$a = 3$$

39. A

$$3^3 + a(3)^2 - 3b = 6$$

$$3a - b = -7$$

$$3a - b + 7 = (-7) + 7 = 0$$

40. A

$$2(2)^2 + 2 + m = 0$$

$$m = -10$$

$$2x^2 + x - 10 = (x - 2)(2x + 5)$$

Thus, $2x^2 + x + m$ is also divisible by $2x + 5$.

41. B

$$\begin{aligned}
 a\left(-\frac{4}{3}\right)^4 - 27\left(-\frac{4}{3}\right)^2 + b &= 0 \\
 \frac{256a}{81} + b - 48 &= 0 \\
 b &= -\frac{256a}{81} + 48 \\
 \text{Remainder} &= a\left(\frac{4}{3}\right)^4 - 27\left(\frac{4}{3}\right)^2 + \left(-\frac{256a}{81} + 48\right) \\
 &= 0
 \end{aligned}$$

42. D

Let R be the required remainder.

$$\begin{cases} 5 = a(-2)^2 + 3(-2) + b \\ R = a(2)^2 + 3(2) + b \end{cases}$$

Subtract one equation from another.

$$R - 5 = 6 - (-6)$$

$$R = 17$$

43. B

$$\begin{aligned}
 \text{Remainder} &= (-1)^{2023} + (-1)^{2022} + (-1)^{2021} + \dots + (-1) \\
 &= [(-1) + 1] + [(-1) + 1] + \dots + (-1) \\
 &= -1
 \end{aligned}$$

44. D

$$(-1)^{2n} + k(-1) - 2k = 0$$

$$1 - 3k = 0$$

$$k = \frac{1}{3}$$

45. A

$$\begin{aligned}
 8\left(\frac{1}{2}\right)^3 - 4\left(\frac{1}{2}\right)^2 + k &= 0 \\
 k &= 0 \\
 \text{Remainder} &= 8\left(-\frac{1}{2}\right)^3 - 4\left(-\frac{1}{2}\right)^2 \\
 &= -2
 \end{aligned}$$

46. C

$$\begin{aligned}
g\left(\frac{1}{2}\right) &= 5 \\
\frac{1}{16} + \frac{a}{2} + b &= 5 \\
b &= \frac{79}{16} - \frac{a}{2} \\
\text{Remainder} &= g\left(-\frac{1}{2}\right) \\
&= \frac{1}{16} - \frac{a}{2} + \left(\frac{79}{16} - \frac{a}{2}\right) \\
&= 5 - a
\end{aligned}$$

47. D

$$\begin{aligned}
9\left(\frac{c}{3}\right)^4 - c^2\left(\frac{c}{3}\right)^2 + 2\left(\frac{c}{3}\right) - 6 &= 0 \\
\frac{2c}{3} - 6 &= 0 \\
c &= 9
\end{aligned}$$

48. B

$$\begin{aligned}
f(-1) &= (-1)^{2014} + a(-1) + b = 3 \\
1 - a + b &= 3 \\
a - b &= -2 \\
\text{Thus, } 2a - 2b + 1 &= 2(a - b) + 1 = 2(-2) + 1 = -3.
\end{aligned}$$

49. A

$$\begin{aligned}
0 &= 4\left(\frac{1}{2}\right)^2 + m\left(\frac{1}{2}\right) + n \\
n &= -1 - \frac{m}{2} \\
\text{Required remainder} &= 4\left(-\frac{1}{2}\right)^2 + m\left(-\frac{1}{2}\right) + n \\
&= 1 - \frac{m}{2} + \left(-1 - \frac{m}{2}\right) \\
&= -m
\end{aligned}$$

50. B

$$\begin{aligned}
P(-1) &= (-1)^{2025} - 3(-1) + k = 4 \\
-1 + 3 + k &= 4 \\
k &= 2
\end{aligned}$$

$$\text{Remainder} = P(1)$$

$$\begin{aligned}
&= (1)^{2025} - 3(1) + 2 \\
&= 0
\end{aligned}$$

51. C

$$0 = k(3)^3 + 2k(3)^2 + 90$$

$$k = -2$$

$$\begin{aligned}\text{Remainder} &= -2(-1)^3 - 4(-1)^2 + 90 \\ &= 88\end{aligned}$$

52. C

$$f(-k) = 0$$

$$-k^3 + k^3 + 4k - 8 = 0$$

$$k = 2$$

$$\text{Remainder} = f(1)$$

$$= 1 + 2 - 4 - 8$$

$$= -9$$

53. B

$$(k^2 + k)(k + 1) = 0$$

$$k(k + 1)^2 = 0$$

$$k = -1 \quad \text{or} \quad 0 \text{ (rejected)}$$

$$\text{Remainder} = f(-2)$$

$$= [(-2)^2 - 1](-2 + 1)$$

$$= -3$$

54. C

Let $g(x) = (2x + 3)q(x)$, where $q(x)$ is a polynomial.

$$\begin{aligned}g(4x - 3) &= [2(4x - 3) + 3]q(4x - 3) \\ &= (8x - 3)q(4x - 3)\end{aligned}$$

Thus, $8x - 3$ is a factor of $g(4x - 3)$.