

Solution	Marks
ELITE-2425-MOCK-SET 11-MATH-CP 1	
Suggested solutions	
1. $m^8 \left(\frac{n^{-2}}{m^3}\right)^3 = m^8 \times \frac{n^{-6}}{m^9}$ $= \frac{1}{m^{9-8}n^6}$ $= \frac{1}{mn^6}$	1M 1M 1A
2. $2x^2 - 8x(y - z)^2 = 2x[x^2 - 4(y - z)^2]$ $= 2x[x + 2(y - z)][x - 2(y - z)]$ $= 2x(x + 2y - 2z)(x - 2y + 2z)$	1M 1M+1A
3. $\frac{2-m}{2} = \frac{5n+3m}{n}$ $2n - mn = 10n + 6m$ $-mn - 6m = 8n$ $m = \frac{-8n}{n+6}$	1M 1M 1A
4. Let the number of cartons of orange juice and pineapple juice be x and y respectively.	
$\begin{cases} x + y = 50 \\ \frac{x}{5} - \frac{y}{5} = 4 \end{cases}$	1M 1M
Solving,	
$\frac{50-y}{5} - \frac{y}{5} = 4$ $50 - 2y = 20$ $y = 15$	1M 1A
There are 15 cartons of pineapple juice on the bench.	
5. (a) $\frac{3x-2}{5} > x - 6$ $-\frac{2x}{5} > -\frac{28}{5}$ $x < 14$ $3x - 12 \geq 0$ $x \geq 4$ Thus, $4 \leq x < 14$.	1A 1A 1A 1M
(b) 10	1A

Solution						Marks
6. (a) The coordinates of A and C are $(2, 0)$ and $(8, -8)$ respectively.						1A+1A
(b) $AB = \sqrt{(8-2)^2 + 8^2} = 10$ $AC = \sqrt{(8-2)^2 + (-8)^2} = 10 = AB$ The lengths of AB and AC are equal.						1M 1A
7. (a) 60.5 marks						1A
(b)	Score	31 – 40	41 – 50	51 – 60	61 – 70	71 – 80
	Class mark	35.5	45.5	55.5	65.5	75.5
	Number of students	5	5	10	15	5
$\text{Mean mark} = \frac{35.5 \times 5 + 45.5 \times 5 + \dots + 75.5 \times 5}{40}$ $= 58$						1A
8. (a) Let $W = kL^3$, where k is a non-zero constant.						1A
$75 = k \times 5^3$ $k = \frac{3}{5}$						1M 1A
$\text{Thus, } W = \frac{3L^3}{5}.$						1A
(b)	$\text{Required percentage} = \frac{\frac{3}{5}[L(1 + 60\%)]^3 - \frac{3}{5}L^3}{\frac{3}{5}L^3} \times 100\%$ $= +309.6\%$					
9. (a) Maximum absolute error = $16 \times 1\% = 0.16$ mm.						1M
Denote the length of a quality component by L mm. Then $15.84 \leq L < 16.16$.						1M+1A
(b) Since 16.20 mm > 16.16 mm, it is not a quality component.						1M 1A

Solution	Marks						
<p>10. (a) $\angle ADE = 90^\circ$ (given) $\angle ABC = 90^\circ$ (given) $= \angle ADE$ $\angle EAD = \angle CAB$ (common \angle) $\triangle ADE \sim \triangle ABC$ (AA)</p> <div style="border: 1px solid black; padding: 5px; margin-top: 10px;"> <p>Marking Scheme</p> <table border="1" style="width: 100%; border-collapse: collapse;"> <tr> <td style="padding: 5px;">Case 1</td> <td style="padding: 5px;">Any correct proof with correct reasons.</td> <td style="padding: 5px; text-align: right;">2</td> </tr> <tr> <td style="padding: 5px;">Case 2</td> <td style="padding: 5px;">Any correct proof without reasons.</td> <td style="padding: 5px; text-align: right;">1</td> </tr> </table> </div>	Case 1	Any correct proof with correct reasons.	2	Case 2	Any correct proof without reasons.	1	
Case 1	Any correct proof with correct reasons.	2					
Case 2	Any correct proof without reasons.	1					
(b) $EB = AE = 20$ cm. $DE = \sqrt{20^2 - 16^2} = 12$ cm Since $\triangle ADE \sim \triangle ABC$,	1A 1M						
$\frac{BC}{AB} = \frac{DE}{AD}$ $\frac{BC}{20+20} = \frac{12}{16}$ $BC = 30$ cm	1M						
Since $\angle CBE = 90^\circ$, CE is a diameter of the required circle. Let the radius of the circle be r .	1M						
$(2r)^2 - 20^2 = 30^2$ $r^2 = 325$							
Required area is $r^2\pi = 325\pi$ cm ² .	1A						
11. (a) $(50 + b) - 21 = 32$ $b = 3$ $37 - (20 + a) = 9$ $a = 8$ Mean of the distribution = $\frac{21 + 23 + \dots + 53}{18} = 33.5$ Standard deviation of the distribution ≈ 8.73	1M 1A 1A 1A 1A 1A						
(b) Original median of the distribution = 33 Age of the new teacher = 33 Change in standard deviation $\approx 8.49 - 8.73$ ≈ -0.232	1A 1A 1A						

Solution	Marks
12. (a) $\frac{OM}{ON} = \frac{AM}{ND}$ $\frac{13.5 - ON}{ON} = \frac{5}{4}$ $ON = 6 \text{ cm}$ Required volume = $\frac{1}{3}\pi(4)^2(6)$ = $32\pi \text{ cm}^3$	1M 1M 1A
(b) Since the volume of milk is greater than the volume of the lower cone, there are $36\pi - 32\pi = 4\pi \text{ cm}^3$ of milk in the upper cone. Let the height of milk in the upper cone be $h \text{ cm}$.	
$\left(\frac{h}{6}\right)^3 = \frac{4\pi}{32\pi}$ $h = 3$	1M
Curved surface area of the lower cone $= \pi(4)(\sqrt{4^2 + 6^2})$ $= 8\sqrt{13}\pi$	1M
Total wet curved surface area $= 8\sqrt{13}\pi \times \left(\frac{3}{6}\right)^2 + 8\sqrt{13}\pi$ $= 10\sqrt{13}\pi \text{ cm}^2$ $> 36\pi \text{ cm}^2$	1M
The claim is agreed.	1A
13. (a) $(x - 6)^2 + (y + 5)^2 = 6^2 + 5^2$ $(x - 6)^2 + (y + 5)^2 = 61$	1M 1A
(b) (i) $H = (12, 0)$ and $K = (0, -10)$	1A+1A
(ii) O, P and Q are collinear.	1A
(iii) Required area = 12×10 = 120	1M 1A

Solution	Marks
14. (a) $f(-1) = h = -h - 1 + 9 + k$ $2h - k = 8$ $0 = f\left(\frac{1}{2}\right) = \frac{h}{8} - \frac{1}{4} - \frac{9}{2} + k$ $h + 8k = 38$ Solving, we have $h = 6$ and $k = 4$.	1M 1M 1A+1A
(b) $f(x) = 6$ $6x^3 - x^2 - 9x - 2 = 0$ $(x + 1)(6x^2 - 7x - 2) = 0$ $x = -1 \quad \text{or} \quad \frac{7 \pm \sqrt{7^2 - 4(6)(-2)}}{2(6)}$ $= -1 \quad \text{or} \quad \frac{7 \pm \sqrt{97}}{12}$ There are some irrational roots in $f(x) = 6$. The claim is disagreed.	1M 1M 1A
15. (a) $6 = ka^0$ $k = 6$ $54 = 6 \times a^{-2}$ $a^2 = \frac{1}{9}$ $a = \frac{1}{3}$	1A 1A
(b) $f(x_1) = \frac{3}{f(x_2)}$ $6 \times \frac{1}{3^{x_1}} = \frac{3}{6 \times \frac{1}{3^{x_2}}}$ $3^{x_1+x_2} = 12$ $(x_1 + x_2) \log 3 = \log 12$ $x_1 + x_2 \approx 2.26$	1M 1M 1A
16. (a) Let the common difference be d . $2014 + 15d = 1729$ $d = -19$	1M 1A
(b) $S(n) = \frac{n}{2}[2(2014) + (n - 1)(-19)] < 0$ $-19n^2 + 4047n < 0$ $n < 0$ (rejected) or $n > 213$ The least value of n is 214.	1M 1A 1A

Solution	Marks
17. (a) Required probability = $\frac{C_6^{18}}{C_8^{20}}$ = $\frac{14}{95}$	1M 1A
(b) Required probability = $\frac{C_8^{10}(C_1^2)^8}{C_8^{20}}$ = $\frac{384}{4199}$	1M 1A
(c) Required probability = $\frac{C_2^{10}C_4^8(C_1^2)^4}{C_8^{20}}$ = $\frac{1680}{4199}$	1M 1A
18. (a) When $y = 0$, $3x^2 - 6mx + 4m^2 = 0$. $\Delta = (6m)^2 - 4(3)(4m^2)$ = $-12m^2$ < 0	1M
The graph has no x -intercepts.	1
(b) $y = f(x)$ = $3(x^2 - 2mx + m^2) + m^2$ = $3(x - m)^2 + m^2$	1M
The coordinates of the vertex are (m, m^2) .	1A
(c) Coordinates of A and B are (m, m^2) and $(m, 0)$ respectively. Since $\angle OBA = 90^\circ$, the circumcentre is the mid-point of OA . The coordinates of circumcentre are $\left(\frac{m}{2}, \frac{m^2}{2}\right)$.	1A 1A
When $m = 2$, the coordinates of circumcentre are $(1, 2)$ which does not lie on $y = x$.	1M
The claim is incorrect.	1A

Solution	Marks
19. (a) In $\triangle ABC$,	
$BC^2 = 5^2 + 10^2 - 2(5)(10) \cos 80^\circ$	1M
$BC \approx 10.4 \text{ cm}$	
$5^2 = 10^2 + BC^2 - 2(10)(BC) \cos \angle ABD$	
$\angle ABD \approx 28.3^\circ$	
In $\triangle ABD$,	
$BD = 10 \cos \angle ABD$	1M
$\approx 8.80 \text{ cm}$	1A
$DC = BC - BD \approx 1.57 \text{ cm}$	1A
(b) (i) In $\triangle ABC$, when $\theta = 45^\circ$,	
$BC^2 = 10^2 + 5^2 - 2(10)(5) \cos 45^\circ$	1M
$BC \approx 7.37 \text{ cm}$	1A
The angle between the faces ABD and ADC is $\angle BDC$.	1A
In $\triangle BDC$,	
$BC^2 = BD^2 + CD^2 - 2(BD)(CD) \cos \angle BDC$	
$\angle BDC \approx 22.1^\circ$	1A
$< 25^\circ$	
The claim is agreed.	1A
(ii) In $\triangle ABC$, when $\theta = 40^\circ$,	
$BC^2 = 10^2 + 5^2 - 2(10)(5) \cos 40^\circ$	
$BC \approx 6.96 \text{ cm}$	
So, $BC + CD \approx 8.53 \text{ cm} < BD$.	1M
This violates the triangle inequality, implying that this situation is impossible.	1