REG-FG-2425-ASM-SET 2-MATH

Suggested solutions

Multiple Choice Questions

1. A	2. A	3. B	4. D	5. A
6. C	7. C	8. B	9. C	10. A
11. C	12. A	13. D	14. C	15. B
16. C	17. B	18. B	19. D	20. A
21. D	22. D	23. D	24. B	25. B
26. B	27. D	28. C	29. A	30. C

1. A

The graph opens downwards when the coefficient of x^2 is negative. The answer is A.

$$y = -2x^2 - 8x + 10$$
 \rightarrow $a = -2, b = -8 \text{ and } c = 10$

Sign	Graph	Conclusion
a < 0	open downwards	B X and D X
b < 0	slope at y-intercept is negative	C X

The answer is A.

3. B

Graph	Conclusion
Open upwards	<i>a</i> > 0
y-intercept is positive	b > 0

The answer is B.

4. D

Graph	Conclusion
Slope at y-intercept is negative	<i>p</i> < 0
y-intercept is negative	q > 0

The answer is D.

5. A

Consider the graph of $y = ax^2 + bx + c$.

Graph	Conclusion
Open upwards	<i>a</i> > 0
Slope at y-intercept is negative	b < 0
y-intercept is positive	<i>c</i> > 0

Consider the graph of $y = bx^2 + cx + a$.

Sign	Graph	Conclusion
<i>b</i> < 0	open downwards	C 🗴 and D 🗴
c > 0	slope at y-intercept is positive	В 🗶

The answer is A.

6. **C**

$$y = x^2 - 6x + 6$$
 \rightarrow $a = 1, b = -6 \text{ and } c = 6$

Sign	Graph	Conclusion
a > 0	open upwards	
<i>b</i> < 0	slope at y-intercept is negative	В 🗶
<i>c</i> > 0	y-intercept is positive	

When y = 0,

$$0 = x^2 - 6x + 6$$

$$x \approx 4.73$$
 or 1.27

There are two *x*-intercepts.

The answer is C.

7. **C**

Graph	Conclusion
Open downwards	m < 0
y-intercept > 0	n > 0

The answer is C.

8. B

The graph opens downwards. We have a < 0.

The coordinates of the vertex of the graph are (-b, c).

We have -b < 0 (b > 0) and c > 0.

Thus, ab < 0 and c > 0.

9. **C**

$$y = x^2 - 2x - 3$$
 \rightarrow $a = 1, b = -2 \text{ and } c = -3$

Sign	Graph	Conclusion
<i>a</i> > 0	open upwards	$A \boldsymbol{\times}$ and $B \boldsymbol{\times}$
b < 0	slope at y-intercept is negative	D X
c < 0	y-intercept is negative	

The answer is C.

10. A

Slope at y-intercept = b < 0

When y = 0, the equation $-3x^2 + bx + c$ has no real roots.

$$\Delta = b^2 - 4(-3)(c) < 0$$
$$b^2 + 12c < 0$$

11. **C**

Graph	Conclusion
Open upwards	m > 0
y-intercept < 0	n < 0

The answer is C.

12. A

Graph	Conclusion
Open downwards	a < 0
y-intercept is positive	<i>c</i> > 0
Two x-intercepts	$\Delta = b^2 - 4ac > 0$

The answer is A.

13. D

The equation $x^2 - 16x + c$ has double real roots.

$$\Delta = 16^2 - 4(1)(c) = 0$$

$$c = 64$$

14. **C**

Coordinates of vertex are (1, 1).

Vertex of the graph lies in the first quadrant.

The answer is C.

15. B

Coordinates of vertex are (-h, k).

$$-h < 0$$
 and $k < 0$

The answer is B.

16. **C**

The coordinates of the vertex are (-b, c).

We have b = 0 and c < 0.

I. **X**. Put
$$x = 0$$
, $y = 2(0+a)^2 + b = 2a^2 + b$.
y-intercept = $2a^2 + b$

II.
$$\checkmark$$
. The coordinates of the vertex are $(-a, b)$.

We have -a > 0 (a < 0) and b < 0.

Thus, ab > 0.

III. X.

$$y = (3x - 1)^2 - 9$$

$$=9\left(x-\frac{1}{3}\right)^2-9$$

The coordinates of vertex are $\left(\frac{1}{3}, -9\right)$.

19. D

Coordinates of vertex are (-1, 1).

Vertex of the graph lies in the second quadrant.

y-intercept =
$$-2(0+1)^2 + 1$$

$$= -1 < 0$$

The answer is D.

20. A

y-intercept =
$$-(0-1)^2 + 9$$

= 8

21. D

Vertex
$$(-b, 0)$$
 \Rightarrow $-b < 0$ \Rightarrow $b > 0$
The graph opens upwards \Rightarrow $a > 0$

22. D

$$y = (ax + 1)^2 + a$$
$$= a^2 \left(x + \frac{1}{a}\right)^2 + a$$

Coordinates of vertex are $\left(-\frac{1}{a}, a\right)$.

Since -1 < a < 0, vertex (\oplus, \ominus) lies in quadrant IV.

When x = 0, $y = 1 + a > 0 \implies y$ -intercept is positive.

23. D

$$y = -(4x - 5)^{2} + 8$$
$$= -16\left(x - \frac{5}{4}\right)^{2} + 8$$

The axis of symmetry is $x = \frac{5}{4}$.

24. B

When
$$x = 0$$
, $y = (0 + 2)^2 - 8 = -4$.

The coordinates of C are (0, -4).

$$y = (3x + 2)^2 - 8$$

$$=9\left(x+\frac{2}{3}\right)^2-8$$

The coordinates of A and B are $\left(-\frac{2}{3}, 0\right)$ and $\left(-\frac{2}{3}, -8\right)$ respectively.

Required area =
$$\frac{(4+8)\left(\frac{2}{3}\right)}{2}$$

25. B

The coordinates of A are (0, 7).

The coordinates of B are (12, 7).

Consider the axis of symmetry.

$$h = \frac{0+12}{2}$$
$$= 6$$

Put (0, 7) into
$$y = \frac{1}{2}(x-6)^2 + k$$
.

$$7 = \frac{1}{2}(0-6)^2 + k$$

$$k = -11$$

We have c = 5.

Let the other *x*-intercept be β .

Then 1 and β are roots of $x^2 + bx + 5 = 0$.

Product of roots =
$$1\beta = \frac{5}{1}$$

$$\beta = 5$$

Equation of axis of symmetry is

$$x = \frac{1+5}{2}$$

$$x = 3$$

27. D

Using the *x*-intercepts, we have f(x) = a(x+2)(x-3), where *a* is a constant.

Put (0, 2) into y = a(x + 2)(x - 3).

$$2 = a(0+2)(0-3)$$

$$a = -\frac{1}{3}$$

Thus,
$$f(x) = -\frac{1}{3}(x+2)(x-3)$$
.

28. **C**

The coordinates of the vertex are (-2, 6).

The equation is in the form $y = a(x + 2)^2 + 6$, where a is a constant.

The answer is C.

- 29. A
 - I. \checkmark . Coefficient of $x^2 = 1 > 0$.
 - II. **X.** y-intercept = $m^2 + n$. Take m = 0 and n = -1, then the y-intercept is not positive.
 - III. \not When x = n, $y = (m n)^2 + n \ge n$. Take m = -1 and n = 1, then $y \ne m$ obviously.

$$(3, -4)$$
 lies on $y = f(x)$ \Rightarrow $f(3) = -4$

$$f(x) + 4 = 0$$

$$f(x) = -4$$

$$x = 3$$

(vertex \rightarrow 3 is a repeated root)

The roots of the equation f(x) + 4 = 0 are real numbers.

Conventional Questions

31. (a)
$$0 = -x^2 + 7x - 6$$

$$x = 1$$
 or 6

Coordinates of A and B are (1, 0) and (6, 0) respectively.

1A+1A

Coordinates of C are (0, -6).

1A

(b)
$$y = -x^2 + 7x - 6$$

$$= -\left[x^2 - 2\left(\frac{7}{2}\right)x + \left(\frac{7}{2}\right)^2\right] + \frac{25}{4}$$

$$= -\left(x - \frac{7}{2}\right)^2 + \frac{25}{4}$$
1M

Thus, coordinates of
$$P$$
 are $\left(\frac{7}{2}, \frac{25}{4}\right)$.

Equation of *L* is
$$y = \frac{25}{4}$$
.

32. (a) Substitute
$$x = 8$$
 into $2x - y - 1 = 0$, we have $y = 6$.

The coordinates of
$$C$$
 are $(8, 6)$ and therefore $k = 6$.

Substitute y = 0 into 2x - y - 10 = 0, we have x = 5.

The coordinates of
$$A$$
 are $(5, 0)$.

Substitute (5, 0) into $y = a(x - 8)^2 + 6$,

$$0 = a(5-8)^2 + 6$$

$$a = -\frac{2}{3}$$

(b) When y = 0,

$$0 = -\frac{2}{3}(x - 8)^2 + 6$$

$$x = 11 \quad \text{or} \quad 5$$

The coordinates of
$$B$$
 are $(11, 0)$.

Slope of
$$BC = \frac{6-0}{8-11} = -2$$
.
The equation of BC is

$$y - 6 = -2(x - 8)$$
 1M

$$y = -2x + 22$$

33. (a) Since the coordinates of the vertex of the graph are (3, 8) and the graph intersects the x-axis at two points,

(3, 8) is the maximum point of the graph of
$$y = f(x)$$
.

Thus, the graph of
$$y = f(x)$$
 opens downwards. 1A

(b) By (a), $f(x) \le 8$.

Thus,
$$k > 8$$
.

- (c) The axis of symmetry is x = 3.
 - One of the *x*-intercept is 1.

1A 1A

Let the other *x*-intercept be β .

$$\frac{1+\beta}{2} = 3$$
$$\beta = 5$$

1**M**

,

The two *x*-intercepts are 1 and 5.

1A

34. (a) $3 = -3^2 + 8(3) + k$

k = -12

(b) $0 = -x^2 + 8x - 12$

$$x = 2$$
 or 6

The coordinates of A and B are (2, 0) and (6, 0) respectively.

1A+1A

- (c) (i) *x*-coordinate of mid-point of $AB = \frac{2+6}{2} = 4$.
 - The axis of symmetry is x = 4.

1A

(ii) CP : PB = (4-3) : (6-4)

= 1:2

1A