

DAYCP-EOC-2425-ASM-SET 2-MATH**Suggested solutions****Conventional Questions**

1. (a) (2, 3) 1A

(b) (i) Let the coordinates of P be (a, b) .We have $3a - 2b - 13 = 0$.

Slope of $PA = \frac{3-b}{2-a}$

$$\frac{3-b}{2-a} \times \frac{3}{2} = -1$$

1M

$$2a + 3b - 13 = 0$$

Solving, we have $a = 5$ and $b = 1$.

1A

Required length = $\sqrt{(5-2)^2 + (1-3)^2}$

$$= \sqrt{13}$$

1A

(ii) (1) P , A and Q are collinear.

1A

(2) Radius = $\sqrt{2^2 + 3^2 - 9}$

$$= 2$$

Required ratio = $AQ : AP$

1M

$$= 2 : \sqrt{13}$$

1A

2. (a) (i) Consider $\triangle ABC$ and $\triangle ODA$,

$$\begin{aligned}
 AB &= AD && \text{(given)} \\
 \angle ACB &= \angle ACD && \text{(equal chords, equal } \angle\text{s)} \\
 \angle OAD &= \angle ACD && \text{(\angle in alt. segment)} \\
 &= \angle ACB \\
 \angle ADO &= \angle ABC && \text{(ext. } \angle, \text{ cyclic quad.)} \\
 \triangle ABC &\sim \triangle ODA && \text{(AA)} \\
 \frac{AB}{BC} &= \frac{OD}{AD} && \text{(corr. sides, } \sim \text{ of } \triangle\text{s)} \\
 AB^2 &= BC \cdot OD
 \end{aligned}$$

Marking Scheme

Case 1	Any correct proof with correct reasons.	3
Case 2	Any correct proof without reasons.	2
Case 3	Incomplete proof with any one correct step with reason.	1

(ii) Since $\angle ACD = \angle ACB$,

$$\begin{aligned}
 \cos \angle ACD &= \cos \angle ACB \\
 \frac{CD^2 + AC^2 - AD^2}{2(CD)(AC)} &= \frac{AC^2 + BC^2 - AB^2}{2(AC)(BC)} && 1M \\
 2(CD^2 + AC^2 - AD^2) &= AC^2 + BC^2 - AB^2 \\
 2CD^2 + 2AC^2 - 2AD^2 &= AC^2 + (2CD)^2 - AD^2 && 1M \\
 AC^2 &= 2CD^2 + AD^2 && 1
 \end{aligned}$$

(b) (i) Since $\angle BCD = 90^\circ$, BD is a diameter.

$$\text{Centre} = \left(\frac{15+27}{2}, \frac{0+24}{2} \right) = (21, 12).$$

The equation of the circle is

$$\begin{aligned}
 (x - 21)^2 + (y - 12)^2 &= (15 - 21)^2 + (0 - 12)^2 && 1M \\
 (x - 21)^2 + (y - 12)^2 &= 180 && 1A
 \end{aligned}$$

(ii) $AB^2 = BC \cdot OD$

$$\begin{aligned}
 AB &= \sqrt{24 \cdot 15} \\
 &= 6\sqrt{10} && 1A \\
 AC^2 &= 2CD^2 + AD^2 \\
 AC^2 &= 2(12)^2 + (6\sqrt{10})^2 && 1M \\
 AC &= 18\sqrt{2} && 1A
 \end{aligned}$$

3. (a) Let (h, k) be the coordinates of A .

$$\begin{cases} \frac{k-0}{h-0} = \frac{3}{4} \\ 4h + 3k - 50 = 0 \end{cases}$$

1M

Solving, we have $h = 8$ and $k = 6$.

1A

Required equation is

$$\begin{aligned} (x-8)^2 + (y-6)^2 &= (0-8)^2 + (0-6)^2 \\ (x-8)^2 + (y-6)^2 &= 100 \end{aligned}$$

1A

(b) (i) $(x-8)^2 + (0-6)^2 = 100$

1M

$$x^2 - 16x = 0$$

$$x = 0 \quad \text{or} \quad 16$$

The coordinates of B are $(16, 0)$.

1A

(ii) Let θ be the inclination of BD .

$$\tan \theta = \frac{3}{4}$$

$$\theta \approx 36.9^\circ$$

$$\angle OAD = 2\angle OBD$$

1M

$$= 2\theta$$

$$\approx 73.7^\circ$$

1A

(iii) $\angle ADM = \angle OAD \approx 73.7^\circ$

Required area

$$\begin{aligned} &= \frac{1}{2}(DM)(AM) \\ &= \frac{1}{2}(AD \cos \angle ADM)(AD \sin \angle ADM) \\ &\approx 13.4 \\ &< 14 \end{aligned}$$

1M

The claim is not correct.

1A

4. (a) Let $f(x) = ax + bx^2$, where a and b are non-zero constants.

1A

$$\begin{cases} 36 = 36a + 36^2b \\ 192 = 48a + 48^2b \end{cases}$$

1M

Solving, we have $a = -8$ and $b = \frac{1}{4}$.

1A

$$\text{Thus, } f(16) = -8(16) + \frac{1}{4}(16)^2 = -64.$$

1A

(b) We have $s = f(16) = -64$ and $t = f(32) = 0$.

1M

The coordinates of S , T and U are $(16, -64)$, $(32, 0)$ and $(16, 0)$.

Note that $\angle SUT = 90^\circ$.

1M

ST is a diameter of the circle.

$$\begin{aligned} \text{Required area} &= \pi \left(\frac{ST}{2} \right)^2 \\ &= \pi \left(\frac{\sqrt{16^2 + 64^2}}{2} \right)^2 \\ &= 1088\pi \end{aligned}$$

1A

5. (a) The coordinates of M are $(4, 7)$.

1A

$$\text{Radius} = \sqrt{4^2 + 7^2 - 61} = 2$$

1A

(b) Slope of L is $-\frac{4}{3}$.

1M

$$\text{Slope of } MN = \frac{3}{4}$$

Required equation is

$$y - 7 = \frac{3}{4}(x - 4)$$

1M

$$3x - 4y + 16 = 0$$

1A

(c) (i) Solve $\begin{cases} 3x - 4y + 16 = 0 \\ 4x + 3y - 62 = 0 \end{cases}$,

1M

we have $x = 8$ and $y = 10$.

The coordinates of N are $(8, 10)$.

1A

$$(ii) MN = \sqrt{(8 - 4)^2 + (10 - 7)^2} = 5$$

1M

Required distance $= 5 - 2$

1M

$$= 3$$

1A