

REG-DISP-2324-ASM-SET 4-MATH**Suggested solutions****Multiple Choice Questions**

1. C	2. B	3. C	4. B	5. A
6. A	7. C	8. D	9. A	10. D
11. D	12. C	13. A	14. B	15. B
16. C	17. C	18. C	19. C	20. C
21. A	22. B	23. A	24. A	25. B
26. A	27. A	28. B	29. A	30. C

1. CLet the standard deviation be σ marks.

$$0.25 = \frac{68 - 65}{\sigma}$$

$$\sigma = 12$$

$$\text{Standard score of Betty} = \frac{80 - 65}{12}$$

$$= 1.25$$

2. BLet x marks be the required score.

$$\frac{x - 60}{12} = 2.25$$

$$x = 87$$

3. CLet \bar{x} and σ be the mean and the standard deviation of the sleeping hours respectively.

$$\begin{cases} 1.75 = \frac{9.4 - \bar{x}}{\sigma} \\ -0.5 = \frac{7.6 - \bar{x}}{\sigma} \end{cases}$$

Solving, we have $\bar{x} = 8$ and $\sigma = 0.8$.

Required standard score

$$= \frac{7 - 8}{0.8}$$

$$= -1.25$$

4. B

Let the mean and standard deviation be \bar{x} marks and σ marks respectively.

$$\begin{cases} \frac{78 - \bar{x}}{\sigma} = 1 \\ \frac{66 - \bar{x}}{\sigma} = -0.5 \end{cases}$$

Solving, we have $\bar{x} = 70$ and $\sigma = 8$.

5. A

Let the mean of the scores be \bar{x} marks.

$$\frac{96 - \bar{x}}{3} = 4$$
$$\bar{x} = 84$$

$$\text{Required standard score} = \frac{81 - 84}{3}$$
$$= -1$$

6. A

I. ✓. Normal distribution \Rightarrow mean at C.R.F. = 0.5

II. ✓. Distribution of M is less dispersed.

III. ✗. C.R.F. equal \Rightarrow standard score equal

7. C

Let the standard deviation of the scores and the score of Billy be σ and x respectively.

$$\begin{cases} 2a = \frac{60 - 74}{\sigma} \\ -a = \frac{x - 74}{\sigma} \end{cases}$$
$$\frac{2a}{-a} = \frac{60 - 74}{\sigma} \div \frac{x - 74}{\sigma}$$
$$-2 = \frac{-14}{x - 74}$$
$$x = 81$$

8. D

Let the mean and standard deviation be \bar{x} marks and σ marks respectively.

$$\begin{cases} 55 = \bar{x} + (-3)\sigma \\ 95 = \bar{x} + 2\sigma \end{cases}$$

Solving, we have $\bar{x} = 79$ and $\sigma = 8$.

9. A

Let a marks and b marks be the minimum and maximum test scores respectively.

Denote the mean score by m marks.

$$\begin{aligned}\text{Required difference} &= \frac{b-m}{20} - \frac{a-m}{20} \\ &= \frac{b-a}{20} \\ &= \frac{100}{20} \\ &= 5 \text{ marks}\end{aligned}$$

10. D

Let the mean and standard deviation be \bar{x} marks and σ marks respectively.

$$\begin{cases} \frac{26 - \bar{x}}{\sigma} = -1 \\ \frac{92 - \bar{x}}{\sigma} = 0.5 \end{cases}$$

Solving, we have $\bar{x} = 70$ and $\sigma = 44$.

11. D

Let the scores, mean, standard deviation, standard scores be x marks, μ marks, σ marks and z respectively.

$$\begin{aligned}z_2 - z_1 &= \frac{x_2 - \mu}{\sigma} - \frac{x_1 - \mu}{\sigma} \\ &= \frac{x_2 - x_1}{\sigma} \\ 5 &= \frac{20}{\sigma} \\ \sigma &= 4\end{aligned}$$

12. C

Let the score of Mary be M .

$$M - M(1 - 12.5\%) = 10$$

$$M = 80$$

Peter scores 70 marks in the test.

$$\begin{cases} -1 = \frac{70 - \mu}{\sigma} \\ 1.5 = \frac{80 - \mu}{\sigma} \end{cases}$$

Solving, we have $\mu = 74$ and $\sigma = 4$.

The mean score of the test is 74 marks.

13. A

Let the scores be a and b with $a > b$. Let \bar{x} marks and σ marks be the mean and standard deviation respectively.

$$\begin{aligned}\frac{a - \bar{x}}{\sigma} - \frac{b - \bar{x}}{\sigma} &= 6 \\ \frac{a - b}{\sigma} &= 6 \\ \sigma &= \frac{30}{6} = 5\end{aligned}$$

14. B

Let the mean and standard deviation be μ marks and σ marks respectively.

$$\begin{cases} \frac{16 - \mu}{\sigma} = 2 \\ \frac{4 - \mu}{\sigma} = -1 \end{cases}$$

Solving, we have $\mu = 8$ and $\sigma = 4$.

15. B

Let the mean and standard deviation be μ marks and σ marks respectively.

$$\begin{cases} \frac{55 - \mu}{\sigma} = -3 \\ \frac{95 - \mu}{\sigma} = 2 \end{cases} \rightarrow \begin{cases} 55 = \mu - 3\sigma \\ 95 = \mu + 2\sigma \end{cases}$$

Solving, we have $\mu = 79$ and $\sigma = 8$. The standard deviation is 8 marks.

16. C

$$\text{Median} = 15 \times 2 + 3 = 33$$

$$\text{Interquartile range} = 10 \times 2 = 20$$

$$\text{Variance} = 40 \times 2^2 = 160$$

17. C

$$\text{New variance} = 49 \times 4^2 = 784$$

18. C

Required value is equal to the standard deviation of the set $\{-5, -2, 3, 5, 10\} \approx 5.27$

19. C

$$\text{Score of Victor} = 70 + 5 \times 4 = 90$$

$$\text{Standard score of Victor after deduction} = \frac{(90 - 4) - (70 - 4)}{4} = 5$$

Useful fact:

Subtracting a constant from each datum will not change the standard score of each datum.

20. C

There are two steps for the transformation of data set: $\times 2, +23$.

$$\text{New standard deviation} = 14 \times 2 = 28$$

21. A

- I. ✓. A: mean = 0 and B: mean = 0
- II. ✓. A: range = $(x + 3) - (x - 3) = 6$ and B: range = $(x + 3) - (x - 3) = 6$
- III. ✗. Subtract x from each datum such that the standard deviation does not change.
A: S.D. ≈ 2.28 and B: S.D. ≈ 2.10

22. B

- I. ✗. If $x = a_5$, then the new and original median are a_5 .
- II. ✓. $r_1 = a_9 - a_1$. Since a_1 and a_9 are elements of the new group, the new range is not less than r_1 .
- III. ✗. We can assign extreme values to x and y such that the new group is more dispersed, and $s_2 > s_1$ in this case.

23. A

- I. ✗. Counter example: $A = \{1, 1000, 1001, 1002\}$. Then $B = \{4, 754, 1004, 1005\}$
- II. ✓. A: range = $x_4 - x_1$ and B: range = $(x_4 + 3) - (x_1 + 3) = x_4 - x_1$
- III. ✗. Counter example: $A = \{1, 1000, 1001, 1002\}$. Then $B = \{4, 754, 1004, 1005\}$

24. A

- I. ✓.
- II. ✓.
- III. ✗. The new group of numbers is less dispersed. We have $v_1 \geq v_2$.

25. B

$\mu_2 = \mu_1$ and the data set is less dispersed \Rightarrow standard deviation is decreased.
However, when all data are equal, the new and original standard deviations are both 0.

26. A

- I. ✓. Range of B = $(g - 4) - (a - 4) = g - a =$ range of A
- II. ✗. Median of B = $d - 4$; median of A = d
- III. ✗. Take A = {0, 2, 3, 4, 99999}.
Variance of A $\approx 1.5999 \times 10^9$
Variance of B is equal to the variance of the set {a, b, d, f, g}.
Take $b = 1$. The mean of a, b, d, g is approximately 25 000.
Take $f = 25\ 000$ to get a smaller variance for group B.
Variance of B $\approx 1.4999 \times 10^9$
The variance of B can be smaller than that of A.

27. A

- I. ✓.
- II. ✗. $r' = kr \neq kr + p$.
- III. ✗. $v' = k^2v \neq kv + p$.

28. B

The marks are multiplied by a constant h and then added by a constant k .

Then $32h + k = 52$ and $4h = 8$. Solving, we have $h = 2$ and $k = -12$.

Simon's new mark = $23(2) - 12 = 34$

29. A

Median = $(18 - 3)4 = 60$

Inter-quartile range = $8 \times 4 = 32$

Variance = $16 \times 4^2 = 256$

30. C

$\times 2 \longrightarrow +15$

New variance = $k^2(2^2) = 4k^2$

Conventional Questions

31. (a) Let Ada's score be x .

$$\frac{x - 90}{\sqrt{64}} = -0.75$$

$$x = 84$$

1M

1A

Her score is 84.

(b) Ada's score lies between 1 standard deviation below mean and the mean.

1

Score of 1 standard deviation below mean is at the $50 - \frac{68}{2} = 16$ th percentile.

Thus, Ada's score is at least the 16th percentile. The claim is agreed.

1A

32. (a) Let \bar{x} be the mean of the scores of the examination.

$$\frac{71 - \bar{x}}{6} = 1.5$$

$$\bar{x} = 62$$

1M

1A

(b) Score of David = $62 - 2.5(6) = 47$

1M

Range of scores $\geq 71 - 47 = 24 > 23$

The claim is disagreed.

1A

33. (a) Let m marks be the mean of the test.

$$\frac{86 - m}{8} = 1.5$$

$$m = 74$$

1M

$$\begin{aligned} \text{Standard score of Ringo} &= \frac{68 - 74}{8} \\ &= -0.75 \end{aligned}$$

1A

(b) (i) Required standard deviation = $8(1 + 30\%) = 10.4$ marks

1A

(ii) Let z and x be the original standard score and the original score of a student respectively.

$$z = \frac{x - 74}{8}$$

$$\text{New standard score} = \frac{[x(1 + 30\%) + 3] - [74(1 + 30\%) + 3]}{10.4}$$

1M+1A

$$= \frac{1.3(x - 74)}{10.4}$$

$$= \frac{x - 74}{8}$$

$$= z$$

The claim is agreed.

1A

34. (a) Let the mean score be μ marks.

$$\frac{x - \mu}{4} - \frac{56 - \mu}{4} = 1.5 - (-1)$$

1M

$$\frac{x - 56}{4} = 2.5$$

$$x = 66$$

1A

(b) The original mean score is 60 marks.

If David left the group, the mean score remains unchanged and the standard deviation of the score increases.

1A

$$\text{New standard score of Joan} = \frac{56 - 60}{\sigma} > \frac{56 - 60}{4}$$

The standard score of Joan increases.

1A