

REG-LOCUS-2324-ASM-SET 4-MATH

Suggested solutions

Conventional Questions

1. (a) Slope of $L_1 = \frac{2-0}{0-8} = -\frac{1}{4}$

Slope of $L_2 = \frac{4-0}{0-16} = -\frac{1}{4}$

We have $L_1 \parallel L_2$.

Thus, Γ is parallel to L_1 .

1A

(b) (i) The coordinates of B are $(0, 3)$.

The equation of Γ is

$$\frac{y-3}{x-0} = -\frac{1}{4}$$

$$x + 4y - 12 = 0$$

1M

1A

(ii) The coordinates of A are $(12, 0)$.

Note that $\angle AOB = 90^\circ$.

AB is a diameter of C .

Radius of C

$$= \frac{1}{2} \sqrt{(12-0)^2 + (0-3)^2}$$

1M

$$= \frac{1}{2} \sqrt{153}$$

Area of C

$$= \pi \left(\frac{1}{2} \sqrt{153} \right)^2$$

1M

$$= \frac{153\pi}{4}$$

1A

2. (a) The coordinates of D are $(-5, 4)$.

Let (h, k) be the coordinates of E .

Denote the locus of P by Γ .

Note that $\Gamma \perp DE$.

$$\frac{-4}{3} \times \frac{k-4}{h+5} = -1$$

1M

$$3h - 4k + 31 = 0$$

The mid-point of DE lies on Γ .

$$4 \left(\frac{-5+h}{2} \right) + 3 \left(\frac{4+k}{2} \right) - 17 = 0$$

1M

$$4h + 3k - 42 = 0$$

Solving, we have $h = 3$ and $k = 10$.

1A

The coordinates of E are $(3, 10)$.

(b) Radius of C

$$= \sqrt{5^2 + 4^2 - 25} \quad 1M$$

$$= 4$$

The coordinates of the mid-point of DE are $(-1, 7)$.

Distance from mid-point of DE to the centre of C

$$= \sqrt{(-1 + 5)^2 + (7 - 4)^2}$$

$$= 5 > 4$$

The minimum distance from P to D is 5, which is greater than the radius of C .

P must lie outside C .

The claim is agreed. 1A

3. (a) The coordinates of G are $(1, 6)$.

$$AG = \sqrt{(1 - 19)^2 + (6 - 30)^2} \quad 1M$$

$$= 30 \quad 1A$$

(b) (i) Γ is the perpendicular bisector of AG . 1A

$$(ii) \text{ Radius of } C = \sqrt{1^2 + 6^2 + 252} = 17 \quad 1M$$

Note that $AM = AN = GM = GN = 17$.

$$MN = 2\sqrt{17^2 - 15^2} \quad 1M$$

$$= 16$$

Perimeter of $\triangle AMN$

$$= 17 + 17 + 16 \quad 1M$$

$$= 50 \quad 1A$$

4. (a) $(x + 1)^2 + (y - 2)^2 = (5 + 1)^2 + (10 - 2)^2$ 1M

$$(x + 1)^2 + (y - 2)^2 = 100 \quad 1A$$

(b) (i) Note that $(-11 + 1)^2 + (2 - 2)^2 = 100$.

Γ passes through H . 1A

$$(ii) AH = \sqrt{(-11 - 5)^2 + (2 - 10)^2} = \sqrt{320} \quad 1A$$

(iii) Let M be the mid-point of AH .

The area of $\triangle AHK$ attains its maximum when $MK \perp AH$ and $\angle HAK < 90^\circ$.

$$BM = \sqrt{10^2 - \left(\frac{\sqrt{320}}{2}\right)^2} = \sqrt{20} \quad 1M$$

Required area

$$= \frac{(\sqrt{320})(\sqrt{20} + 10)}{2} \quad 1M$$

$$\approx 129$$

$$< 130$$

The claim is agreed. 1A

5. (a) $(x - 7)^2 + (y + 4)^2 = (14 - 7)^2 + (-28 + 4)^2$ 1M

$(x - 7)^2 + (y + 4)^2 = 625$ 1A

(b) (i) Γ is the perpendicular bisector of GH . 1A

(ii) Let M be the mid-point of GH .

The coordinates of M are $(-2, 8)$.

$GM = \sqrt{(7 + 2)^2 + (-4 - 8)^2} = 15 < 25$ 1M

M lies inside C_1 .

Thus, Γ intersects C_1 at two distinct points. 1

(c) Let r_2 be the radius of C_2 .

$$GH = 25 + r_2$$

$$2(15) = 25 + r_2$$

$$r_2 = 5$$

We have $GQ = GH + r_2 = 35$. 1M

$$AB = 2\sqrt{25^2 - 15^2} = 40$$
 1M

Note that $AGBQ$ is a kite.

Required area

$$\begin{aligned} &= \frac{(40)(35)}{2} \\ &= 700 \end{aligned}$$
 1A

6. (a) Perpendicular distance from P to $AB = \frac{20 \times 2}{5} = 8$ 1M

Locus of P is a pair of straight lines parallel to AB , maintaining a distance of 8 to AB .

Let θ be the inclination of AB .

$$\tan \theta = \frac{6 - 3}{4 - 0} = \frac{3}{4}. \text{ So, } \cos \theta = \frac{4}{\sqrt{3^2 + 4^2}} = \frac{4}{5}.$$

Let c be the y -intercept of Γ .

$$\frac{4}{5} = \frac{8}{\pm(c - 3)}$$
 1M

$$c = -7 \quad \text{or} \quad 13$$

The equation of Γ is $y = \frac{3}{4}x - 7$ or $y = \frac{3}{4}x + 13$. 1A

(b) Perpendicular distance from P to $AB = 8 > 5$.

It is not possible to have $AP = AB$ or $BP = AB$.

When $AP = BP$, P lies on perpendicular bisector of AB .

Equation of perpendicular bisector of AB is

$$y - \frac{9}{2} = -\frac{4}{3}(x - 2)$$
 1M

$$y = -\frac{4}{3}x + \frac{43}{6}$$

Solve $\begin{cases} y = -\frac{4}{3}x + \frac{43}{6} \\ y = \frac{3}{4}x - 7 \end{cases}$ or $\begin{cases} y = -\frac{4}{3}x + \frac{43}{6} \\ y = \frac{3}{4}x + 13 \end{cases}$,

the coordinates of P are $\left(\frac{34}{5}, -\frac{19}{10}\right)$ or $\left(-\frac{14}{5}, \frac{109}{10}\right)$.

1A+1A

7. (a) The coordinates of G are $(4, 10)$.

1M

Required equation is

$$(x - 4)^2 + (y - 10)^2 = (14 - 4)^2 + (20 - 10)^2$$

1M

$$(x - 4)^2 + (y - 10)^2 = 200$$

1A

(b) The equation of L_1 is

$$\frac{y - 0}{x + 6} = \frac{20 - 0}{14 + 6}$$

1M

$$y = x + 6$$

The coordinates of the three vertices of the bounded region are $(0, 6)$, $(0, k)$ and $(k - 6, k)$.

1M

$$\frac{(k - 6)(k - 6 - 0)}{2} = 200$$

$$k - 6 = \pm 20$$

$$k = 26 \quad \text{or} \quad -14 \quad (\text{rejected})$$

1A

(c) $\sqrt{(x - 4)^2 + (y - 10)^2} = \sqrt{(y - 26)^2}$

1M+1M

$$x^2 + y^2 - 8x - 20y + 116 = y^2 - 52y + 676$$

1M

$$x^2 - 8x + 32y - 560 = 0$$

1A