

REG-LOCUS-2324-ASM-SET 2-MATH

Suggested solutions

Multiple Choice Questions

1. D	2. C	3. D	4. D	5. C
6. D	7. B	8. D	9. C	10. D
11. A	12. B	13. D	14. A	15. D
16. C	17. C	18. A		

1. D

AB is fixed, so the perpendicular distance from P to L is also a constant.

Thus, locus of P is a pair of straight lines, parallel to L and maintain a fixed distance from L .

2. C

y -coordinate of P is 5.

The locus of P is a horizontal line passing through $(-5, 5)$.

3. D

Locus of Q should be a pair of straight lines with infinite length, 2 units from L , one above L and one below L .

4. D

Let coordinates of P be (x, y) .

$$\begin{aligned}\sqrt{(x+3)^2 + (y-1)^2} &= 2\sqrt{(x-6)^2 + (y+2)^2} \\ (x+3)^2 + (y-1)^2 &= 4(x-6)^2 + 4(y+2)^2 \\ 0 &= 3x^2 + 3y^2 - 54x + 18y + 150 \\ 0 &= x^2 + y^2 - 18x + 6y + 50\end{aligned}$$

5. C

Note that MN is fixed and does not vary with P .

Locus of P is a circle with centre M and radius MN .

- A. ✗. Not a circle.
- B. ✗. Not a circle.
- C. ✓.
- D. ✗. Centre is at $(6, 8)$, not M .

6. D

y-coordinate of $P = 1 \pm 4$

$$= 5 \quad \text{or} \quad -3$$

Required equations are $y = -3$ and $y = 5$.

7. B

Locus of B is a line parallel to AC , slope $= -\frac{2}{3}$.

Only the slope of straight line in option B is $-\frac{2}{3}$.

8. D

Let the coordinates of P be (x, y) .

$$\sqrt{(x - 2)^2 + (y - 0)^2} = \sqrt{[x - (-2)]^2}$$

$$x^2 + y^2 - 4x + 4 = x^2 + 4x + 4$$

$$y^2 = 8x$$

Required equation is $y^2 = 8x$.

9. C

$x^2 + y^2 = 4$ is a circle with centre $(0, 0)$ and radius 2.

The locus of P is a pair of concentric circles with centre $(0, 0)$ and radii 1 and 3 respectively.

The answer is C.

10. D

Let the coordinates of P be (x, y) .

$$\sqrt{(x + 1)^2 + (y - 1)^2} = \sqrt{(x + 1)^2 + (y - 5)^2}$$

$$x^2 + y^2 + 2x - 2y + 2 = x^2 + y^2 + 2x - 10y + 26$$

$$y = 3$$

Required equation is $y = 3$.

11. A

Locus of P is the perpendicular bisector of AB .

Slope of AB is negative \Rightarrow slope of locus of P is positive.

Positive slope \Rightarrow A, B or C

Locus of P passes through mid-point of AB $(3, 2) \Rightarrow$ A

12. B

Centre $(3, 2)$ satisfies the locus condition, so it lies on the locus $(x + 2y + k = 0)$

$$3 + 2(2) + k = 0$$

$$k = -7$$

13. D

$$L_1: 12x - 4y + 28 = 0$$

Required equation is

$$12x - 4y + \frac{28 + (-11)}{2} = 0$$

$$24x - 8y + 17 = 0$$

14. A

$\angle ABC = 90^\circ$ and BC is parallel to x -axis.

Slope of $BP = \tan 45^\circ = 1$. Equation of BP is

$$y + 4 = 1(x + 4)$$

$$y = x$$

15. D

Since A lies above L , the locus of P is a parabola opening upwards.

16. C

Equidistant from a point and a straight line \Rightarrow locus of P is a parabola.

17. C

Let the coordinates of P be (x, y) .

$$\sqrt{(x + 1)^2 + (y - 3)^2} = \sqrt{(y - 0)^2}$$

$$x^2 + y^2 + 2x - 6y + 10 = y^2$$

$$x^2 + 2x - 6y + 10 = 0$$

$$y = \frac{1}{6}(x^2 + 2x + 10)$$

Required equation is $y = \frac{1}{6}(x^2 + 2x + 10)$.

18. A

The coordinates of the centre are $(2, 1)$.

The line joining mid-point of AB and centre $(2, 1)$ is vertical.

So, AB is parallel to the x -axis. The equation of AB is $y = 0$.

$$x^2 + 0^2 - 4x - 2(0) = 0$$

$$x = 0 \quad \text{or} \quad 4$$

The coordinates of A and B are $(0, 0)$ and $(4, 0)$.

Note that the locus of P is the circle with diameter AB .

Required equation is

$$(x - 2)^2 + (y - 0)^2 = (0 - 2)^2 + (0 - 0)^2$$

$$(x - 2)^2 + y^2 = 4$$

Conventional Questions

19. $\sqrt{(x-2)^2 + (y-7)^2} = \sqrt{(x+3)^2 + (y+6)^2}$ 1M

$$x^2 + y^2 - 4x - 14y + 53 = x^2 + y^2 + 6x + 12y + 45$$

$$5x + 13y - 4 = 0$$

Required equation is $5x + 13y - 4 = 0$. 1A

20. Let the coordinates of P be (x, y) .

$$\sqrt{(x-11)^2 + (y-1)^2} = y + 3$$

$$x^2 + y^2 - 22x - 2y + 122 = y^2 + 6y + 9$$

$$x^2 - 22x - 8y + 113 = 0$$

Required equation is $x^2 - 22x - 8y + 113 = 0$.

21. (a) Let the coordinates of P be (x, y) .

$$\sqrt{(x+15)^2 + (y-1)^2} = \sqrt{(x+9)^2 + (y+7)^2}$$

$$x^2 + y^2 + 30x - 2y + 226 = x^2 + y^2 + 18x + 14y + 130$$

$$12x - 16y + 96 = 0$$

$$3x - 4y + 24 = 0$$

Equation of the locus of P is $3x - 4y + 24 = 0$. 1A

(b) Locus of P cuts x -axis and y -axis at $(-8, 0)$ and $(0, 6)$ respectively. 1A

When the circle is the smallest, centre = mid-point of $AB = (-4, 3)$.

Equation of C is

$$(x+4)^2 + (y-3)^2 = (-8+4)^2 + (0-3)^2$$

$$(x+4)^2 + (y-3)^2 = 25$$

22. (a) Let the radius be r . The coordinates of A are $(0, r)$.

$$(3-0)^2 + (r-9)^2 = r^2$$

$$-18r + 90 = 0$$

$$r = 5$$

The coordinates of A are $(0, 5)$.

(b) $x^2 + (y-5)^2 = 5^2$ 1M

$$x^2 + y^2 - 10y = 0$$

(c) (i) Γ is a pair of straight lines perpendicular to L and their perpendicular distances from AB are equal to $\frac{BC}{2}$. 1A+1A

(ii) Let the coordinates of C be $(t, 0)$.

$$\frac{9-0}{3-t} \times \frac{9-5}{3-0} = -1$$

$$t = 15$$

1M

$$\begin{aligned}\text{Required distance} &= \frac{BC}{2} - r \\ &= \frac{OC}{2} - 5 \\ &= \frac{5}{2}\end{aligned}$$

1M

1A

23. (a) (i) $\angle OAD = 90^\circ$ (given)

$$\angle OBD = 90^\circ \quad (\text{tangent} \perp \text{radius})$$

$$= \angle OAD$$

Therefore, A, B, O and D are concyclic. (converse of $\angle s$ in the same segment)

$$\angle OAD = 90^\circ \quad (\text{given})$$

$$\angle OCE = 90^\circ \quad (\text{tangent} \perp \text{radius})$$

$$\angle OAD + \angle OCE = 90^\circ + 90^\circ$$

$$= 180^\circ$$

Therefore, A, O, C and E are concyclic. (opp. $\angle s$ supp.)

Marking Scheme

Case 1 Any correct proof with correct reasons. 3

Case 2 Any correct proof without reasons. 2

Case 3 Incomplete proof with any one correct step with reason. 1

(ii) $\angle OBD = 90^\circ$ (tangent \perp radius)

$$\angle OCE = 90^\circ \quad (\text{tangent} \perp \text{radius})$$

$$= \angle OBD$$

$$OB = OC \quad (\text{radii})$$

$$\angle ODB = \angle OAB \quad (\angle s \text{ in the same segment})$$

$$= \angle OEC \quad (\angle s \text{ in the same segment})$$

$$\triangle BDO \cong \triangle CEO \quad (\text{AAS})$$

Marking Scheme

Case 1 Any correct proof with correct reasons. 2

Case 2 Any correct proof without reasons. 1

(b) Since $OC \perp CE$,

$$\frac{8-6}{3-0} \times \frac{0-8}{a-3} = -1$$

$$a = \frac{25}{3}$$

1M

1A

Required equation is

$$(x - 0)^2 + (y - 6)^2 = \left(\frac{25}{3}\right)^2 + (0 - 6)^2 \quad 1\text{M}$$
$$x^2 + (y - 6)^2 = \frac{949}{9} \quad 1\text{A}$$

(c) Let the coordinates of P be (x, y) .

$$\sqrt{(x - 0)^2 + (y - 0)^2} = 3\sqrt{(x - 0)^2 + (y - 6)^2} \quad 1\text{M}$$
$$x^2 + y^2 = 9x^2 + 9(y^2 - 12y + 36)$$
$$2x^2 + 2y^2 - 27y + 81 = 0 \quad 1\text{A}$$