

REG-EOC-2324-ASM-SET 8-MATH

Suggested solutions

Conventional Questions

1. (a) (i)

$$CE = EB \quad (\text{given})$$

$$OA = OB \quad (\text{radii})$$

$$OE \parallel AC \quad (\text{mid-pt. theorem})$$

$$\angle BOE = \angle OAD \quad (\text{corr. } \angle s, AC \parallel OE)$$

$$\angle DOE + \angle BOE = 2\angle OAD \quad (\angle \text{ at centre twice } \angle \text{ at } \odot^{\text{ce}})$$

$$\angle DOE + \angle BOE = 2\angle BOE$$

$$\angle DOE = \angle BOE$$

Marking Scheme

Case 1	Any correct proof with correct reasons.	2
Case 2	Any correct proof without reasons.	1

- (ii) $\angle DOE = \angle BOE \quad (\text{proved})$

$$OE = OE \quad (\text{common side})$$

$$OD = OB \quad (\text{radii})$$

$$\triangle DOE \cong \triangle BOE \quad (\text{SAS}) \angle OBE = 90^\circ \quad (\text{tangent } \perp \text{ radius})$$

$$\angle ODE = \angle OBE \quad (\text{corr. } \angle s, \cong \triangle s)$$

$$= 90^\circ$$

Thus, DE is the tangent to the circle at D . (converse of tangent \perp radius).

Marking Scheme

Case 1	Any correct proof with correct reasons.	2
Case 2	Any correct proof without reasons.	1

- (b) (i) $\angle ODE + \angle OBE = 90^\circ + 90^\circ = 180^\circ$ 1M

Thus, O, B, E, D are concyclic.

Since $\angle OBE = 90^\circ$, OE is a diameter of the circle $OBED$.

The coordinates of O are $(0, 8)$.

$$\text{Slope of } OE = \frac{8-0}{0+6} = \frac{4}{3}$$

Required equation is

$$y - 0 = -\frac{3}{4}(x + 6)$$

$$3x + 4y + 18 = 0$$

1M

1A

(ii) The circumcentre of $\triangle BDE$ is the mid-point of OE .

The coordinates of the centre are $(-3, 4)$.

Required equation is

$$(x + 3)^2 + (y - 4)^2 = (-6 + 3)^2 + (0 - 4)^2 \quad 1\text{M}$$

$$(x + 3)^2 + (y - 4)^2 = 25 \quad 1\text{A}$$

2. (a) $\angle CAB = \angle BAD$ (common \angle)

$$\angle ABC = \angle ADB \quad (\angle \text{ in alt. segment})$$

$$\triangle ABC \sim \triangle ADB \quad (\text{AA})$$

Marking Scheme

Case 1 Any correct proof with correct reasons. 2

Case 2 Any correct proof without reasons. 1

(b) (i) $\frac{AC}{AB} = \frac{AB}{AD}$

$$\frac{\sqrt{9^2 + 12^2}}{36 + 9} = \frac{36 + 9}{\sqrt{9^2 + 12^2} + CD}$$

$$CD = 120$$

Radius of Γ is 60.

Note that $\angle EBA = 90^\circ$.

The coordinates of E are (60, 36). 1M

Required equation is

$$(x - 60)^2 + (y - 36)^2 = 60^2$$

$$(x - 60)^2 + (y - 36)^2 = 3600 \quad 1\text{A}$$

(ii) E is the mid-point of CD .

The coordinates of D are (108, 72). 1A

Let $x^2 + y^2 + dx + ey + f = 0$ be the equation of the circumcircle of $\triangle BED$.

$$\begin{cases} 0^2 + 36^2 + 0 + 36e + f = 0 \\ 60^2 + 36^2 + 60d + 36e + f = 0 \\ 108^2 + 72^2 + 108d + 72e + f = 0 \end{cases} \quad 1\text{M}$$

Solving, we have $d = -60$, $e = -252$ and $f = 7776$.

Required equation is $x^2 + y^2 - 60x - 252y + 7776 = 0$. 1A

E is the mid-point of CD .

The coordinates of D are (108, 72). 1A

Note that the centre of the circumcircle lies on the perpendicular bisector of BE , which is $x = 30$.

Let the coordinates of the centre of the circumcircle of $\triangle BED$ be $(30, k)$.

$$\sqrt{(30 - 0)^2 + (k - 36)^2} = \sqrt{(30 - 108)^2 + (k - 72)^2}$$

$$k^2 - 72k + 2196 = k^2 - 144k + 11268$$

$$k = 126$$

Required equation is

$$(x - 30)^2 + (y - 126)^2 = (0 - 30)^2 + (36 - 126)^2$$

$$(x - 30)^2 + (y - 126)^2 = 9000$$

1A

(iii) Area of the circumcircle of $\triangle BED$

$$= (\sqrt{30^2 + 126^2 - 7776})^2 \pi$$

$$\approx 28300$$

Let r be the radius of the inscribed circle of $\triangle BED$.

Consider the area of $\triangle BED$.

$$\frac{(36 + 9)(108)}{2} = \frac{(AB)(r)}{2} + \frac{(BD)(r)}{2} + \frac{(AD)(r)}{2}$$

$$r \approx 16.5$$

1M

$$(\text{Area of the inscribed circle of } \triangle BED) \times 30$$

$$= \pi r^2 \times 30$$

$$\approx 25800$$

< area of the circumcircle of $\triangle BED$

The claim is agreed.

1

3. (a) The coordinates of the centre are (4, 10).

1M

Required equation is

$$(x - 4)^2 + (y - 10)^2 = (-6 - 4)^2 + (0 - 10)^2$$

1M

$$(x - 4)^2 + (y - 10)^2 = 200$$

1A

(b) Slope of $L_1 = \frac{20 - 0}{14 + 6} = 1$

Equation of L_1 is

$$y - 0 = 1(x + 6)$$

1M

$$y = x + 6$$

L_1 intersects L_2 and the y -axis at $(k - 6, k)$ and $(0, 6)$ respectively.

$$\frac{(k - 6)(k - 6)}{2} = 200$$

1M

$$(k - 6)^2 = 400$$

$$k = 26 \quad \text{or} \quad -14 \text{ (rejected)}$$

1A

4. (a) Let the coordinates of G be $(h, 26)$.

Note that G lies on the perpendicular bisector of AB .

$$\begin{aligned} h &= \frac{5+13}{2} & 1M \\ &= 9 \end{aligned}$$

The equation of C is

$$\begin{aligned} (x-9)^2 + (y-26)^2 &= (5-9)^2 + (23-26)^2 & 1M \\ (x-9)^2 + (y-26)^2 &= 25 & 1A \end{aligned}$$

$$(b) \sqrt{(k-9)^2 + (38-26)^2} = 15 & 1M$$

$$k^2 - 18k = 0$$

$$k = 18 \quad \text{or} \quad 0 \text{ (rejected)} & 1A$$

(c) (i) T, P and G are collinear. & 1A

(ii) Radius of C is 5.

$$\begin{aligned} \text{Required ratio} &= GP : PT & 1M \\ &= 5 : (15-5) \\ &= 1 : 2 & 1A \end{aligned}$$

5. (a) (i) $x^2 + (mx)^2 - 400x - 300mx + 40000 = 0$ 1M

$$(1 + m^2)x^2 - (300m + 400)x + 40000 = 0$$

$$\Delta = (300m + 400)^2 - 4(1 + m^2)(40000) > 0$$

$$10000(-7m^2 + 24m) > 0$$

$$0 < m < \frac{24}{7}$$

1A

(ii) x -coordinate of $M = \frac{1}{2} \left[\frac{300m + 400}{1 + m^2} \right]$

$$= \frac{50(3m + 4)}{1 + m^2}$$

y -coordinate of $M = m \cdot \frac{50(3m + 4)}{1 + m^2}$

$$= \frac{50m(3m + 4)}{1 + m^2}$$

1

(b) (i) Perpendicular bisector of AB is the line passing through O and the centre of C .

1M

The coordinates of the centre of C are (200, 150).

Required equation is

$$y - 0 = \frac{150 - 0}{200 - 0}(x - 0)$$

$$3x - 4y = 0$$

1A

(ii) Note that L touches C when $m = 0$ or $\frac{24}{7}$.

When $m = 0$, the coordinates of the intersection of L and C are (200, 0).

The coordinates of B are (200, 0).

1A

When $m = \frac{24}{7}$, we have the coordinates of A are (56, 192).

Denote the centre of C by G (200, 150).

Suppose G and M are distinct points.

Note that $\angle GMO = 90^\circ$ and $\angle OBG = 90^\circ$.

We have O, B, G, M are concyclic.

1M

Since $\angle OAG = 90^\circ$ and $\angle GMO = 90^\circ$, we have O, A, G, M are concyclic.

Thus, O, A, M, G and B are concyclic.

If G and M coincides, O, A, G, B are also concyclic.

Note that OG is a diameter of the circle.

The coordinates of the centre of the required circle are (100, 75).

1M

Required equation is

$$(x - 100)^2 + (y - 75)^2 = (0 - 100)^2 + (0 - 75)^2$$

$$(x - 100)^2 + (y - 75)^2 = 15625$$

1A

(iii) Denote the centre of the circle AMB by D .

$$\tan \angle BOG = \frac{150}{200}$$

$$\angle BOG \approx 36.9^\circ$$

$$\angle ADB = 2\angle AOB = 2(2\angle BOG) \approx 147^\circ$$

1M

$$\text{Length of } \Gamma \leq 2\pi(125) \times \frac{\angle ADB}{360^\circ}$$

1M

$$\approx 322 < 330$$

The claim is disagreed.

1A

6. (a) (i) $\angle BEC = \angle BDC$ ($\angle s$ in the same segment)

$$\angle ECG = \angle BEC \quad (\text{alt. } \angle s, BE \parallel CG)$$

$$= \angle BDC$$

$$\angle BCE = \angle BDE \quad (\angle s \text{ in the same segment})$$

$$\angle BCG = \angle BCE + \angle ECG$$

$$= \angle BDE + \angle BDC \quad (\text{proved})$$

$$= \angle CDG$$

Marking Scheme	
Case 1	Any correct proof with correct reasons.
Case 2	Any correct proof without reasons.

2

1

(ii) $\angle CBD = \angle DBE$ (*equal arcs, equal $\angle s$*)

$$\angle BHC = \angle DBE \quad (\text{alt. } \angle s, BE \parallel CG)$$

$$= \angle CBD$$

$$BC = HC \quad (\text{sides opp. equal } \angle s)$$

Marking Scheme	
Case 1	Any correct proof with correct reasons.
Case 2	Any correct proof without reasons.

2

1

$$(b) (i) BH : DH = \frac{144}{25} : 8 \quad 1M$$

$$= 18 : 7 \quad 1A$$

$$x\text{-coordinate of } H = \frac{18}{25} \times (6) = \frac{108}{25} \quad 1M$$

$$\text{The coordinates of } H \text{ are } \left(\frac{108}{25}, -\frac{144}{25} \right). \quad 1A$$

$$(ii) \text{ Slope of } BD = \frac{-8}{6} = -\frac{4}{3}$$

$$\text{Slope of } CE = \frac{0 + \frac{144}{25}}{6 + \frac{42}{25}} = \frac{3}{4} \quad 1M$$

$$\text{Since } \frac{-4}{3} \times \frac{3}{4} = -1, BD \perp CE \text{ and so } \angle CFD = 90^\circ = \angle CGD. \quad 1A$$

C, D, G and F are concyclic. (converse of \angle s in the same segment)

1

(iii) CD is a diameter of the circle $CDGF$.

$$\text{Slope of } CD = \frac{-8 + \frac{144}{25}}{6 + \frac{42}{25}} = -\frac{7}{24}$$

$$\text{Slope of tangent required} = \frac{24}{7} \quad 1M$$

Required equation is

$$y + 8 = \frac{24}{7}(x - 6)$$

$$24x - 7y - 200 = 0 \quad 1A$$

7. (a) $(x - 2)^2 + (y - 6)^2 = r^2$ 1A

(b) (i) Let G be the centre of C' . Then $G (-2, 6 - c)$. 1A

Since $AG \perp PQ$,

$$\frac{6 - c - 6}{-2 - 2} \times \left(-\frac{1}{2}\right) = -1 \quad 1M$$

$$c = 8 \quad 1A$$

(ii) mid-point of AG lies on PQ , i.e., $(0, 2)$ lies on PQ . 1M

$$\text{The equation of } PQ \text{ is } y = -\frac{x}{2} + 2. \quad 1A$$

$$(iii) (x - 2)^2 + \left(-\frac{x}{2} + 2 - 6\right)^2 = r^2 \quad 1M$$

$$\frac{5}{4}x^2 + 20 - r^2 = 0$$

a and d are roots of the equation.

$$\text{So, } a + d = 0 \text{ and } ad = \frac{4(20 - r^2)}{5}. \quad 1M$$

$$(a - d)^2 = (a + d)^2 - 4ad$$

$$= \frac{16(r^2 - 20)}{5} \quad 1A$$

$$(c) PQ^2 = (a - d)^2 + \left[\left(-\frac{a}{2} + 2\right) - \left(-\frac{d}{2} + 2\right)\right]^2$$

$$80 = \frac{5}{4}(a - d)^2$$

$$= 4(r^2 - 20) \quad 1M$$

$$r^2 = 40$$

$$r = 2\sqrt{10} \quad \text{or} \quad -2\sqrt{10} \text{ (rejected)}$$

$$AB = \sqrt{(2 + 1)^2 + (6 - 1)^2} = \sqrt{34} < r$$

So, B lies inside C .

The claim is agreed. 1A