

REG-EOC-2324-ASM-SET 6-MATH**Suggested solutions****Multiple Choice Questions**

1. A	2. D	3. C	4. A	5. C
6. D	7. A	8. A	9. D	10. A
11. A	12. B	13. B	14. B	15. C
16. A	17. A	18. D	19. B	20. B
21. A	22. B	23. A	24. C	25. C
26. D	27. C	28. D	29. B	30. B

1. A

Solve $\begin{cases} 4x - 3y = 0 \\ x^2 + y^2 - 4x - 22y + 75 = 0 \end{cases}$, we have $(x, y) = (3, 4)$ or $(9, 12)$.

mid-point of MN is at $(6, 8)$.

Required equation is

$$(x - 6)^2 + (y - 8)^2 = (3 - 6)^2 + (4 - 8)^2$$

$$(x - 6)^2 + (y - 8)^2 = 25$$

2. D

Solve the system $\begin{cases} x - y + 9 = 0 \\ x^2 + y^2 - 6x + cy - 7 = 0 \end{cases}$ using the calculator program.

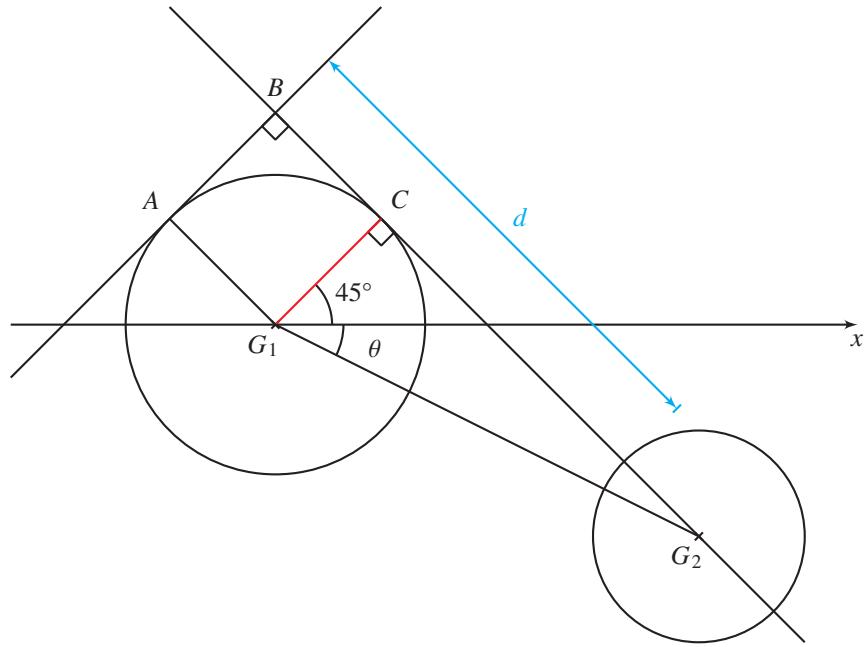
Value of c	Number of intersections	Sign of Δ
-56	2	+

Required range contains -56 and -56 is not a boundary value of the range.

The answer is D.

3. C

Let G_1 and G_2 be the centres of circles C_1 and C_2 respectively.



Suppose L touches C_1 at A , B is a point on L such that $BG_2 \perp L$.

Let C be a point on BG_2 such that $AB \parallel CG_1$.

Note that C does not necessarily lie on C_1 .

Since slope of $L = 1$, the inclination of $CG_1 = 45^\circ$.

$$G_1G_2 = \sqrt{4^2 + 2^2} = \sqrt{20}$$

$$\text{slope of } G_1G_2 = -\tan \theta = \frac{-2}{4}$$

$$\theta = \tan^{-1} \frac{1}{2}$$

$$\text{In } \triangle CG_1G_2, G_1G_2 = \sqrt{20} \text{ and } CG_2 = G_1G_2 \sin(45^\circ + \theta) = \sqrt{18}$$

$$\text{Required distance} = BG_2 - 1$$

$$\begin{aligned} &= (AG_1 + CG_2) - 1 \\ &= (\sqrt{2} + 3\sqrt{2}) - 1 \\ &= 4\sqrt{2} - 1 \end{aligned}$$

4. A

Solve the system $\begin{cases} 3x - y - 2 = 0 \\ x^2 + y^2 + \frac{k}{5}x + \frac{4}{5} - 4 = 0 \end{cases}$ using calculator program.

The coordinates in the calculator are saved as **(A, B)** and **(X, Y)**.

x -coordinate of mid-point = $\frac{\mathbf{A} + \mathbf{X}}{2}$

Value of k	Number of intersections	$\frac{\mathbf{A} + \mathbf{X}}{2}$
-152	2	2
-52	2	1
148	2	-1
248	2	-2

The answer is A.

5. C

Solve the simultaneous equations $\begin{cases} mx - y - 5 = 0 \\ x^2 + y^2 - 11x + 7y + 20 = 0 \end{cases}$ using the calculator program.

Value of m	Number of intersections	Sign of Δ
-3	0	-

Required range contains -3 and -3 is not a boundary value.

The answer is C.

6. D

Solve the system $\begin{cases} x - 2y + 1 = 0 \\ x^2 + y^2 - 6x + k = 0 \end{cases}$ using the calculator program.

Value of k	Number of intersections	Sign of Δ
0	2	+

Required range does not contain $k = 0$ and 0 is not a boundary value of the required range.

The answer is D.

7. A

Solve $\begin{cases} x - 3y + k = 0 \\ x^2 + y^2 + 6x - 8y + 15 = 0 \end{cases}$ by the calculator program.

Value of k	Number of intersections	Sign of Δ
0	0	-

Required range does not contain 0.

Note that the required range should contain the boundary value as $\Delta = 0$ also satisfies the condition. The answer is A.

We have $x = 3y - k$.

$$(3y - k)^2 + y^2 + 6(3y - k) - 8y + 15 = 0$$

$$10y^2 + (10 - 6k)y + (k^2 - 6k + 15) = 0$$

The quadratic equation has real root(s).

$$\Delta = (10 - 6k)^2 - 4(10)(k^2 - 6k + 15) \geq 0$$

$$-4k^2 + 120k - 500 \geq 0$$

$$5 \leq k \leq 25$$

8. A

Solve the system $\begin{cases} 3x + 4y + k = 0 \\ x^2 + y^4 - \frac{9}{4} = 0 \end{cases}$ using the calculator program.

Value of k	Number of intersections	Sign of Δ
$-\frac{15}{2}$	1	0
0	2	+

Required range has $-\frac{15}{2}$ as a boundary value (not equal to) and includes 0.

The answer is A.

9. D

A. Using the calculator program, the system $\begin{cases} x + y - 9 = 0 \\ x^2 + y^2 + 6x + 6y + 9 = 0 \end{cases}$ does not have real solutions.

B. $x + y + 9 = 0$ does not pass through (3, 6).

C. Same reason as A.

D. ✓.

10. A

Solve the system $\begin{cases} kx - y + 2 = 0 \\ x^2 + y^2 - 5x - 9y + 24 = 0 \end{cases}$ using calculator program.

Value of k	Number of intersection	Sign of Δ
$\frac{1}{3}$	1	0
-3	0	-

Required range has $\frac{1}{3}$ as one of the boundary value, and it contains $k = -3$.
The answer is A.

11. A

Solve the system $\begin{cases} x + 2y + k = 0 \\ x^2 + y^2 + 2y - 4 = 0 \end{cases}$ using the calculator program.

Value of k	Number of intersections	Sign of Δ
7	1	0
0	2	+

Required range contains "7" as a boundary value, and does not include 0.

The answer is A.

12. B

Solve the system $\begin{cases} 2x - y + k = 0 \\ x^2 + y^2 - 8x - 10y - 39 = 0 \end{cases}$ using the calculator program.

- A. ✗. 2 distinct intersections.
- B. ✓. 1 intersection: (4, 9).
- C. ✗. 2 distinct intersections.
- D. ✗. 2 distinct intersections.

13. B

Solve the system $\begin{cases} x - y + k = 0 \\ x^2 + y^2 + 2x - 4y - 13 = 0 \end{cases}$ using the calculator program.

Value of k	Number of intersections	Sign of Δ
-9	0	-

Required range does not contain -9 and -9 is not a boundary value.

The answer is B.

14. B

Solve the system $\begin{cases} x + y + 4 = 0 \\ x^2 + y^2 + 2x - 6y + k = 0 \end{cases}$ using the calculator program.

- A. 2 distinct intersections: $(-2, -2)$ and $(-6, 2)$.
- B. ✓.
- C. No intersections.
- D. No intersections.

15. C

When the straight line passes through centre $(-1, 2)$, $k = -1 - 2 = -3$.

mid-point of AB is then centre of the circle.

When $k = -3$, y -coordinate of mid-point = 2.

Only option C satisfies this.

16. A

Solve the system $\begin{cases} 3x + 4y + k = 0 \\ x^2 + y^2 - 12x - 14y + 60 = 0 \end{cases}$ using the calculator program.

Value of k	Number of intersections	Sign of Δ
-71	1	0
0	0	-

Required range has -71 as a boundary value and excludes 0.

The answer is A.

17. A

I. ✓. G lies inside $\triangle OAB$, which is in the second quadrant. The x - and y -coordinates are not equal (one positive and one negative).

II. ✓. Let the radius of inscribed circle be r . Then the coordinates of G are $(-r, r)$.

$$4r + (-r) = 3kb$$

$$r = kb$$

Using tangent properties, OB is divided into two segments with lengths $b - r$ and r .
 OA is divided into two segments with lengths $10 - r$ and r .

$$\begin{aligned} (10 - r) + (b - r) &= \sqrt{10^2 + b^2} \\ [10 + b(1 - 2k)]^2 &= b^2 + 100 \\ 100 + 20b(1 - 2k) + b^2(1 - 2k)^2 &= b^2 + 100 \\ b^2(4k^2 - 4k) + 20b(1 - 2k) &= 0 \\ b = -\frac{20(1 - 2k)}{4k^2 - 4k} & \\ &= \frac{5(1 - 2k)}{k(1 - k)} \end{aligned}$$

$$\text{Required distance} = r = kb = \frac{5(1 - 2k)}{1 - k}$$

$$\text{III. } \times. \text{ When } k = \frac{1}{6}, r = \frac{5(1 - 2k)}{1 - k} = 4.$$

Equation of inscribed circle is $(x + 4)^2 + (y - 4)^2 = 4^2$.

$$(x + 4)^2 + (5 - 3x - 4)^2 = 16$$

$$10x^2 + 2x + 1 = 0$$

$$\Delta = 2^2 - 4(10)(1) = -36 < 0.$$

The straight line $3x + y = 5$ does not cut the inscribed circle of $\triangle OAB$ and hence is not a tangent.

18. D

Solve the system $\begin{cases} x - y + m = 0 \\ x^2 + y^2 + 2x - 4y - 13 = 0 \end{cases}$ using the calculator program.

Value of m	Number of intersections	Sign of Δ
-9	0	-

Required range does not contain $m = -9$ and -9 is not a boundary value of the required range.
The answer is D.

19. **B**

Solve the system $\begin{cases} 2x + y - 5 = 0 \\ x^2 + y^2 - kx + 6y - 10 = 0 \end{cases}$ using the calculator program.

Value of k	Number of intersections	Sign of Δ
2	2	+

Required range does not contain 2 and 2 is not a boundary value of the range.

The answer is B.

20. **B**

Solve the system $\begin{cases} 3x - 4y + k = 0 \\ x^2 + y^2 + 2x - 2y - 7 = 0 \end{cases}$ using the calculator program.

Value of k	Number of intersections	Sign of Δ
-8	1	0

Required range has -8 as a boundary value (can equal to).

The answer is B.

21. **A**

The mid-point of MN lies on $hx + ky = 6$.

$$h(1) + k(0) = 6$$

$$h = 6$$

The coordinates of the centre are (4, 2).

The line joining centre and the mid-point of MN is perpendicular to MN .

$$\frac{2-0}{4-1} \times \left(-\frac{h}{k}\right) = -1$$

$$k = 4$$

We have $h = 6$.

Use the values of k given in each option.

Value of k	Intersections	Mid-point
4	(3.77, -4.16) and (-1.77, 4.16)	(1, 0)
6	(5.07, -4.07) and (-2.07, 3.07)	$\left(\frac{3}{2}, -\frac{1}{2}\right)$
9	(6.47, -3.65) and (-2.16, 2.11)	$\left(\frac{28}{13}, -\frac{10}{13}\right)$
12	(7.35, -3.17) and (-2.15, 1.57)	$\left(\frac{13}{5}, -\frac{4}{5}\right)$

The answer is A.

22. B

C cuts x -axis at two points \Rightarrow when $y = 0$, x has two distinct real values.

Check by calculator formula 01, only options A and B are possible.

Equation of L is $y = -\frac{\sqrt{3}}{3}x \rightarrow \sqrt{3}x + 3y = 0$. Using the program to check the intersections:

- A. Distinct coordinates $\rightarrow \times$
- B. Identical coordinates $\rightarrow \checkmark$

23. A

Solve the system $\begin{cases} mx - y = 0 \\ x^2 + y^2 - 6x + 4 = 0 \end{cases}$ using the calculator program.

- A. 1 intersection \rightarrow tangent
- B. No intersections
- C. No intersections
- D. No intersections

24. C

Consider the system

$$\begin{cases} x - y + 13 = 0 \\ x^2 + y^2 - 14x + cy - 223 = 0 \end{cases}$$

Put $y = x + 13$ into equation of circle gives a quadratic equation.

Discriminant of the quadratic equation should be positive (2 distinct real roots) \Rightarrow options A or C

When $c = 0$, by calculator program, there are two intersections \Rightarrow required range contains 0
 \Rightarrow the answer is C.

25. C

When the straight line passes through centre $(-1, 2)$, $k = -1 - 2 = -3$.

mid-point of AB is then centre of circle.

When $k = -3$, x -coordinate of mid-point = -1 .

Only option C satisfies this.

26. D

Solve the system $\begin{cases} mx - y - 1 = 0 \\ x^2 + y^2 - 16x - 2y + 31 = 0 \end{cases}$ using the calculator program.

The system has repeated solutions when $m = \frac{5}{3}$ and when $m = -\frac{3}{5}$.

Thus, $m = \frac{5}{3}$ or $-\frac{3}{5}$.

27. C

Solve the system $\begin{cases} 2x - y - 6 = 0 \\ x^2 + y^2 - 8y - 14 = 0 \end{cases}$ using the calculator program.

The coordinates in the calculator are saved as (\mathbf{A}, \mathbf{B}) and (\mathbf{X}, \mathbf{Y}) .

y -coordinate of mid-point = $\frac{\mathbf{B} + \mathbf{Y}}{2} = 2$

28. D

Solve the system $\begin{cases} x - y + k = 0 \\ x^2 + y^2 - 2x + 4y - 3 = 0 \end{cases}$ using the calculator program.

Value of k	Number of intersections	Sign of Δ
-7	1	0
0	2	+

Required range has -7 as a boundary value and excludes 0.

The answer is D.

29. B

Solve the system $\begin{cases} 4x - 3y = 0 \\ x^2 + y^2 - 3kx + ky + 1 = 0 \end{cases}$ using the calculator program.

I. 1 intersection: $\left(-\frac{3}{5}, -\frac{4}{5}\right)$.

II. 1 intersection: $\left(\frac{3}{5}, \frac{4}{5}\right)$.

III. 2 intersections.

30. B

Solve the system $\begin{cases} 2x - y + b = 0 \\ x^2 + y^2 - 2x - y + \frac{5}{4} = 0 \end{cases}$ using the calculator program.

- A. X. No intersections
- B. ✓. 1 intersection: $\left(1, \frac{1}{2}\right)$
- C. X. No intersections
- D. X. No intersections