

REG-EOC-2324-ASM-SET 5-MATH**Suggested solutions****Conventional Questions**

1. (a) $10^2 + (-2)^2 + 5k(10) - k(-2) = 0$ 1M
 $k = -2$ 1A

(b) The equation of C is $x^2 + y^2 - 10x + 2y = 0$.
The coordinates of M are $(5, -1)$. 1A

(c) Slope of $MA = \frac{-1+2}{5-10} = -\frac{1}{5}$. 1M
The slope of tangent to C at $A = 5$.
The equation of tangent to C at A is

$y + 2 = 5(x - 10)$ 1M
 $5x - y - 52 = 0$ 1A

2. (a) Substitute L into C ,

$$x^2 + (mx + 2)^2 = 2 \quad 1M$$

$$(1 + m^2)x^2 + 4mx + 2 = 0$$

If L touches C ,

$$(4m)^2 - 4(1 + m^2)(2) = 0 \quad 1M$$

$$8m^2 - 8 = 0$$

$$m = \pm 1 \quad 1A$$

(b) Substitute $x = -2y - \frac{1}{2}$ into C ,

$$\left(-2y - \frac{1}{2}\right)^2 + y^2 = 2 \quad 1M$$

$$5y^2 + 2y - \frac{7}{4} = 0$$

$$\Delta = 2^2 - 4(5)\left(-\frac{7}{4}\right) = 39 > 0 \quad 1M$$

They intersect each other. 1A

3. (a) Slope of $L = \tan 45^\circ = 1$ 1A
 The equation of L is $y = x + 1$. 1A

(b) $x^2 + (x + 1)^2 - 8x - 6(x + 1) + k = 0$ 1M
 $2x^2 - 12x - 5 + k = 0$
 $\Delta = (-12)^2 - 4(2)(-5 + k) = 0$ 1M+1A
 $k = 23$ 1A

(c) Put $k = 23$ into the equation in (b),
 $2x^2 - 12x + 18 = 0$
 $x = 3$

When $x = 3$, $y = 4$. The coordinates of B are $(3, 4)$. 1A
 Since B is the mid-point of the centres of two circles, the coordinates of centre of S_1 are $(2, 5)$. 1A

4. (a) $P(8, 6)$ 1A
 Radius = 6 1A

(b) (i) $y = mx$ 1A
 (ii) $x^2 + (mx)^2 - 16x - 12(mx) + 64 = 0$ 1M
 $(1 + m^2)x^2 + (-16 - 12m)x + 64 = 0$ 1A
 $\Delta = (-16 - 12m)^2 - 4(1 + m^2)(64) = 0$ 1M
 $7m^2 - 24m = 0$
 $m = \frac{24}{7}$ or 0 (rejected) 1A

(c) $OQ = \sqrt{8^2 + 6^2} + 6 = 16$ 1A
 Let $Q(p, q)$.
 $\frac{p}{8} = \frac{16}{10}$ and $\frac{q}{6} = \frac{16}{10}$ 1M
 $p = \frac{64}{5}$ $q = \frac{48}{5}$
 $Q\left(\frac{64}{5}, \frac{48}{5}\right)$ 1A
 Slope of $OQ = \frac{3}{4}$
 Slope of $AB = -\frac{4}{3}$
 Equation of AB is
 $y - \frac{48}{5} = -\frac{4}{3}\left(x - \frac{64}{5}\right)$ 1M
 $4x + 3y - 80 = 0$ 1A

5. (a) $Q(8, 6)$ 1A

Coordinates of $C = \left(\frac{0+8}{2}, \frac{0+6}{2}\right)$ 1M
 $= (4, 3)$ 1A

(b) Slope of $RC = \frac{6-3}{0-4} = -\frac{3}{4}$
Slope of tangent to the circle at $R = \frac{4}{3}$ 1M
The equation of tangent to the circle at P is

$$\frac{y-0}{x-8} = \frac{4}{3}$$
 1M
 $4x - 3y - 32 = 0$ 1A

The equation of tangent to the circle at R is $y = \frac{4}{3}x + 6$ 1A

(c) Slope of $OC = \frac{3-0}{4-0} = \frac{3}{4}$
Slope of tangent to the circle at $O = -\frac{4}{3}$ 1M
Product of slopes of two tangents $= -\frac{4}{3} \times \frac{4}{3} = -\frac{16}{9} \neq -1$ 1M
So, the tangents to the circle at R and at O are not perpendicular.
Thus, the quadrilateral formed is not a rectangle. The claim is not correct. 1A

6. (a) (i)
$$\frac{1}{x-1} - \frac{x+2}{x^2-1} = \frac{x+1-(x+2)}{x^2-1}$$

 $= \frac{-1}{x^2-1}$ 1A
Thus, $A = 0$ and $B = -1$. 1A

(ii)
$$\begin{aligned} f(x) &= -4x^2 - 16x - 19 \\ &= -4[x^2 + 2(2)(x) + 2^2] - 3 \\ &= -4(x+2)^2 - 3 \end{aligned}$$
 1M
1A

The maximum value of $f(x)$ is -3 . 1A

(b)
$$\begin{aligned} x^2 + [(k+2)x]^2 + \frac{1}{k-1}x - \frac{1}{k^2-1}(k+2)x + \frac{1}{(k^2-1)^2} &= 0 \\ (k^2+4k+5)x^2 + \left(\frac{1}{k-1} - \frac{k+2}{k^2-1}\right)x + \frac{1}{(k^2-1)^2} &= 0 \\ (k^2+4k+5)x^2 - \frac{1}{k^2-1}x + \frac{1}{(k^2-1)^2} &= 0 \end{aligned}$$
 1M
1A

$$\begin{aligned} \Delta &= \left(\frac{1}{k^2-1}\right)^2 - 4(k^2+4k+5)\left(\frac{1}{(k^2-1)^2}\right) \\ &= \frac{1}{(k^2-1)^2}(-4k^2 - 16k - 19) \\ &= \frac{1}{(k^2-1)^2}[-4(k+2)^2 - 3] \\ &\leq -3\left(\frac{1}{(k^2-1)^2}\right) < 0 \end{aligned}$$
 1M

C and L do not intersect.
The claim is agreed. 1A

7. (a) $\angle ABC = \angle AOC$

$$\angle ADC = 2\angle ABC = 2\angle AOC$$

1M

$$\angle OCD = \angle OAD = 90^\circ$$

1M

In quadrilateral $OACD$,

$$\angle AOC + 2 \times 90^\circ + \angle ADC = 360^\circ$$

1M

$$3\angle AOC = 180^\circ$$

$$\angle AOC = 60^\circ$$

1A

(b) (i) $\angle AOD = \frac{1}{2}\angle AOC = 30^\circ$

1M

In $\triangle AOD$,

$$\begin{aligned}\sin 30^\circ &= \frac{AD}{OD} \\ &= \frac{BD}{OD}\end{aligned}$$

$$OD = 2BD$$

1M

Therefore, the coordinates of D are $\left(\frac{0+2 \times 9}{3}, \frac{0+2 \times 9}{3}\right) = (6, 6)$.

1A

Required equation is

$$(x-6)^2 + (y-6)^2 = (9-6)^2 + (9-6)^2$$

$$(x-6)^2 + (y-6)^2 = 18$$

1A

(ii) Let $y = mx$ be the equation of tangent from O .

$$(x-6)^2 + (mx-6)^2 = 18$$

1M

$$(m^2 + 1)x^2 - 12(m+1)x + 54 = 0$$

Since $y = mx$ is a tangent,

$$\Delta = [-12(m+1)]^2 - 4(m^2 + 1)(54) = 0$$

1M

$$-72m^2 + 288m - 72 = 0$$

1A

$$\begin{aligned}m &= \frac{4 \pm \sqrt{4^2 - 4}}{2} \\ &= 2 \pm \sqrt{3}\end{aligned}$$

The equation of OA and OC are $y = (2 - \sqrt{3})x$ and $y = (2 + \sqrt{3})x$ respectively.

1A+1A