REV-LOG-2324-ASM-SET 3-MATH

Suggested solutions

Multiple Choice Questions

- 1. D
- 2. C
- 3. B
- 4. C
- 5. A

- 6. B
- 7. A
- 8. D
- 9. A
- 10. D

- 11. A
- 12. C
- 13. A
- 14. C
- 15. A

- 16. D
- 17. A
- ____
- 10.4
- 10.11

- 21. C
- 22. D
- 18. B
- 19. A
- 20. D

- 26. C
- 27. B
- 23. C 28. B
- 24. D
- 25. A

- 31. A
- 32. C
- 29. C
- 30. B 35. C

- 36. D
- 37. C
- 33. B 38. C
- 34. B 39. A
- 40. A

- 41. B
- 42. B
- 1. D

$$y = a + b^x$$

$$y - a = b^x$$

 $\log(y - a) = x \log b$

The graph of log(y - a) against x is a straight line.

Slope = $\log b$ and passes through the origin.

2. **C**

For the point (0, -2).

$$\log x = 0 \quad \text{and} \quad \log y = -2$$

$$x = 1$$

$$y = 10^{-2} = \frac{1}{100}$$

$$\frac{1}{100} = k(1)^2$$

$$k = \frac{1}{100}$$

3. B

Base of log is 2, which is greater than 1.

The graph of y against x is also increasing.

$$x = 0$$
 \rightarrow $\log_2 y = -1$ \longrightarrow $y = 2^{-1} = 0.5$

Only option B satisfies these.

$$y = 3x^2$$

 $\log y = 2\log x + \log 3$

I. **✓**.

II. X. There is no y-intercept indeed, we have only the log y-intercept.

III. \checkmark . $y = 3x^2$

$$\log_3 y = 2\log_3 x + \log_3 3$$

Slope of the line is also 2.

5. A

$$\log_2 y - 1 = \frac{1}{3}(\log_4 x + 3)$$

$$\log_2 y = \frac{1}{3}\log_4 x + 2$$

$$\frac{\log y}{\log 2} = \frac{\log x}{3(2\log 2)} + 2$$

$$\log y = \frac{1}{6} \log x + 2 \log 2$$
$$= \log 2^2 x^{\frac{1}{6}}$$

$$y = 4x^{\frac{1}{6}}$$

Thus, we have $n = \frac{1}{6}$.

6. B

I. **✓**.

II. 🗸.

III. X. The graph of $y = \log_a x$ should pass through (1, 0).

7. **A**

A. **✓**.

B. **X**. The graph passes through (1, 0) but $y = 5^1 = 5 \neq 0$.

C. X. The graph passes through (1, 0) but $y = 0.2^1 = 0.2 \neq 0$.

D. **X**. When y = 1, $x = 0.2^1 = 0.2$ but the graph shown does not pass through (0.2, 1) obviously.

8. D

Slope of the graph = $\frac{0+2}{4-0} = \frac{1}{2}$. The equation is

$$\log_9 y = \frac{1}{2}x - 2$$
$$y = 9^{\frac{1}{2}x - 2}$$
$$= 9^{-2} \times 3^x$$

So, b = 3.

9. A

Consider the point (0, 2).

$$\log_3 x = 0$$
 and $\log_3 y = 2$
 $x = 1$ $y = 3^2 = 9$

Consider the point (4, 0).

$$\log_3 x = 4$$
 and $\log_3 y = 0$
 $x = 3^4 = 81$ $y = 1$

Check the relation using the values of x and y.

$$x = 1 & y = 9$$
 $x = 81 & y = 1$

В. 🗶

A.

The answer is A.

10. D

For the point (0, -3).

$$\log_9 x = 0$$
 and $\log_3 y = -3$
 $x = 1$ $y = 3^{-3} = \frac{1}{27}$

Only option D satisfies this pair of x and y.

For the point (0, 5),

$$\log_2 x = 0 \quad \text{and} \quad \log_8 y = 5$$
$$x = 1 \qquad \qquad y = 8^5$$
$$= 2^{15}$$

Only option A satisfies this.

12. **C**

Bases of $\log_4 x$ and $\log_4 y$ are both 4, which is greater than 1.

The resulting graph is also decreasing.

When $\log_4 x = 0$, we have x = 1 and $\log_4 y = \log_4 (4 \cdot 1^n) = 1 > 0$.

Value of vertical intercept is positive. Only option C satisfies all of these.

13. A

For the point (0, 3).

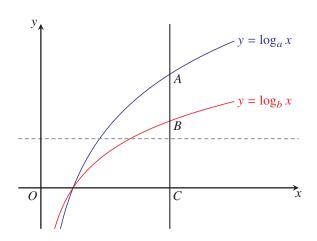
$$\log_2 t = 0 \quad \text{and} \quad \log_2 x = 3$$
$$t = 1 \qquad \qquad x = 2^3 = 8$$

For the point (4, 0).

$$\log_2 t = 4$$
 and $\log_2 x = 0$
 $t = 2^4 = 16$ $x = 1$

The answer is A.

The *x*-intercept of the graphs are 1. Draw the line y = 1.



- I. \checkmark . $y = \log_a x$ intersects the line y = 1 at (a, 1). Compare with the x-intercept, we have a > 1.
- II. **X**. $y = \log_b x$ intersects the line y = 1 at (b, 1). Therefore, b > a

III.
$$\checkmark$$
. Let $x = k$. Then $A(k, \log_a k)$ and $B(k, \log_b k)$.
$$\frac{AB}{BC} = \frac{\log_a k - \log_b k}{\log_b k}$$
$$= \frac{\frac{\log k}{\log a} - \frac{\log k}{\log b}}{\frac{\log k}{\log b}} \times \frac{\log a \log b}{\log a \log b}$$
$$= \frac{\log b - \log a}{\log a}$$
$$= \log_a \frac{b}{a}$$

15. A

For the point $\left(\frac{1}{3}, 0\right)$,

$$\log_8 x = \frac{1}{3}$$
 and $\log_4 y = 0$
 $x = 8^{\frac{1}{3}} = 2$ $y = 1$

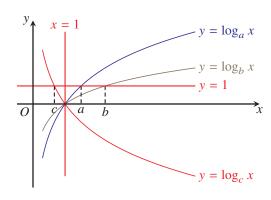
Only option A satisfies this.

16. D

Draw the line y = 1.

The line intersects the graphs at (a, 1), (b, 1) and (c, 1).

From the graph, we have c < a < b.



17. **A**

Slope = 2 and vertical intercept = -2. We have $\log_3 y = 2 \log_3 x - 2$.

$$\log_3 y = 2\log_3 x - 2$$
$$\log_3 y = \log_3 x^2 - \log_3 9$$
$$y = \frac{x^2}{9}$$

It has a shape of parabola opening upwards and passing through origin.

$$y = m \log_{\frac{1}{3}} x + c = -m \log_3 x + c$$

$$Slope = -m = \frac{2}{4}$$

$$m = -\frac{1}{2}$$

Let $\log y = mx + c$, where m is a constant.

From the linear graph, we have m > 0 and c < 0.

$$\log y = mx + c$$
$$y = 10^{mx+c}$$
$$y = 10^{c} \cdot (10^{m})^{x}$$

Consider the graph of y against x.

y-intercept =
$$10^c < 10^0 = 1$$

Since $10^m > 10^0 = 1$, the curve is increasing.

The answer is A.

20. D

The base of log is 6 (greater than 1), the new graph is also decreasing.

When
$$x = 0$$
, $y = 0.5$, then $\log_6 y = \log_6 0.5 < 0$.

The new graph has a negative intercept on vertical axis.

$$y = ab^x$$

$$\log y = \log a + x \log b$$

Slope =
$$\log b < 0 \Rightarrow 0 < b < 1$$

Vertical intercept = $\log a > 0 \Rightarrow a > 1$

22. D

Substitute $(\log_4 x, \log_4 y) = (1, 2)$ and (9, 6) into $\log_4 y = \log_4 k + a \log_4 x$,

$$\begin{cases} 2 = \log_4 k + a(1) \\ 6 = \log_4 k + a(9) \end{cases}$$

Solving, we have $\log_4 k = \frac{3}{2}$ and $a = \frac{1}{2}$.

So, $k = 4^{\frac{3}{2}} = 8$.

23. C

Slope of the line = $\frac{6-0}{0-3} = -2$ Equation of the graph is

$$\log_a y - 6 = -2(x - 0)$$

$$\log_a y = -2x + 6$$

$$y = a^{-2x+6}$$

$$=a^6(a^{-2})^x$$

We have $m = a^6$ and $n = a^{-2}$.

I. **✓**.

II. **X**. Take a = 0.5, then n = 4.

III. \checkmark . $mn^3 = (a^6)(a^{-2})^3 = 1$.

24. D

Suppose the equation of L is x = k.

I. \mathbf{X} . $y = \log_b x$ and the line y = 1 intersect at (b, 1).

The *x*-intercept of the graph of $y = \log_b x$ is 1.

Thus, we have 0 < b < 1 from the graph.

II. \checkmark . The coordinates of A and B are $(k, \log_a k)$ and $(k, \log_b k)$. Since AC = BC,

$$\log_a k = -\log_b k$$

$$\frac{\log k}{\log a} = -\frac{\log k}{\log b}$$

$$\log b = -\log a$$

$$\log ab = 0$$

$$ab = 1$$

III. \checkmark . The *x*-intercept of the curves is 1.

Thus, OC > 1.

25. A

For the point (0, 2).

$$\log_3 x = 0$$
 and $\log_3 y = 2$

$$x = 1$$

$$y = 3^2 = 9$$

Only option A satisfies this.

26. C

Slope of the graph = $\frac{4-0}{0+2}$ = 2. The equation is

$$\log_3 y = 2x + 4$$

$$y = 3^{2x+4}$$

$$=3^{2x}\times 3^4$$

$$= 81 \times 9^x$$

So, n = 9.

$$\log_2 x = 4 \quad \text{and} \quad \log_4 y = 0$$
$$x = 2^4 \quad y = 1$$

(0, 5)

$$\log_2 x = 0 \quad \text{and} \quad \log_4 y = 5$$
$$x = 1 \qquad \qquad y = 4^5$$
$$y = 2^{10}$$

	x^5y^2	x^2y^5	x^4y^2	x^5y^4
$x = 2^4 \text{ and } y = 1$	2^{20}	28	2 ¹⁶	2 ²⁰
$x = 1 \text{ and } y = 2^{10}$	2^{20}	2 ⁵⁰	2^{20}	2^{40}

The answer is B.

Slope of the linear graph =
$$\frac{5-0}{0-4} = -\frac{5}{4}$$

 $\log_4 y - 5 = -\frac{5}{4}(\log_2 x - 0)$
 $5\log_2 x + 4\log_4 y = 20$
 $\frac{5\log x}{\log 2} + \frac{4\log y}{2\log 2} = 20$
 $5\log x + 2\log y = 20\log 2$
 $\log x^5 y^2 = \log 2^{20}$
 $x^5 y^2 = 2^{20}$

28. B

At the point (2, 1),

$$\log_2 x = 2 \quad \text{and} \quad \log_4 y = 1$$
$$x = 4 \qquad \qquad y = 4$$

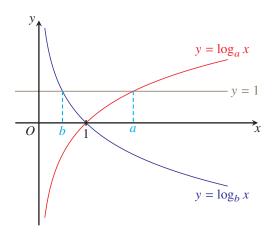
Put
$$(x, y) = (4, 4)$$
 into $y = kx^{a}$,
 $4 = k(4^{a})$
 $k = \frac{4}{4^{a}}$
 $= 4^{1-a}$

Draw the line y = 1.

The line intersects the graph at (b, 1) and (a, 1).

From the graph, we have 0 < b < 1 < a.

The result follows.



30. B

Base of $\log_7 y$ is 7, and is greater than 1. So, the graph of $\log_7 y$ against x is also decreasing as in the original graph of y against x.

$$x = 0$$
 \rightarrow $y = 3$ \rightarrow $\log_7 y = \log_7 3 > 0$

The result is a straight line with negative slope and positive intercept on vertical axis, which is B.

31. A

When x = 1, $y = \log_a 1 + b = b$.

The curve passes through (1, b). We have b < 0.

Consider the *x*-intercept of the graph.

$$0 = \log_a x + b$$

$$\log_a x = -b$$

$$x = a^{-b}$$

We have $a^{-b} < 1$ from the graph.

Thus, we have 0 < a < 1.

From the point (0, 2).

$$\log_5 x = 0 \quad \text{and} \quad \log_5 y = 2$$

$$x = 5^0 \qquad y = 5^2$$

$$x = 1 \qquad y = 25$$

From the point (-4, 0).

$$\log_5 x = -4 \quad \text{and} \quad \log_5 y = 0$$
$$x = 5^{-4} \qquad \qquad y = 1$$

$$x = 1 \text{ and } y = 25$$
 $x = 5^{-4} \text{ and } y = 1$
A. $x = 5^{-4} \text{ and } y = 1$
B. $x = 5^{-4} \text{ and } y = 1$
C. $x = 5^{-4} \text{ and } y = 1$

33. B

Base of $log_3 y$ is 3, which is greater than 1.

The required graph is also increasing.

When
$$x = 0$$
, $\log_3 y = \log_3 0.5 < 0$.

Required graph is increasing and has a negative intercept on the vertical axis.

34. B
$$\frac{AC}{AB} = \frac{\log_c k}{\log_b k}$$

$$= \frac{\log k}{\log c} \div \frac{\log k}{\log b}$$

$$= \frac{\log b}{\log c}$$

$$= \log_c b$$

For the point (0, -1),

$$\log_7 x = 0 \quad \text{and} \quad \log_7 y = -1$$
$$x = 1 \qquad \qquad y = 7^{-1}$$

We have $7^{-1} = a(1)^b$, and $a = \frac{1}{7}$. For the point (2, 0),

$$\log_7 x = 2 \quad \text{and} \quad \log_7 y = 0$$
$$x = 49 \quad y = 1$$

We have $1 = \frac{1}{7}(49)^b$, and $b = \frac{1}{2}$.

36. D

$$\log_{27} y = \log_{27} a + x \log_{27} b$$
Slope = $\log_{27} b = \frac{0+1}{3-0}$

$$b = 27^{\frac{1}{3}}$$
= 3

37. **C**

For the point (0, 8),

$$\log_4 x = 0 \quad \text{and} \quad \log_8 y = 8$$
$$x = 1 \qquad \qquad y = 8^8$$
$$= 2^{24}$$

Only option C satisfies this.

38. **C**

$$0 = a + \log_b x \quad \text{and} \quad 0 = \log_c x$$

$$\log_b x = -a \qquad \qquad x = 1$$

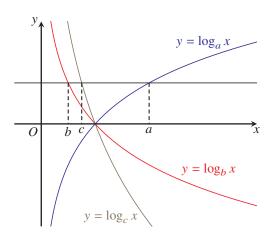
$$x = b^{-a}$$
Thus, $OT: OS = 1: b^{-a} = b^a: 1$.

39. A

Draw the line y = 1.

Note that the x-intercepts of the graphs are 1.

We have 0 < b < c < 1 < a.



40. A

Slope of the graph = -4 and $y^3 = -4 \log_5 x + 12$.

$$2^3 = -4\log_5 x + 12$$

$$\log_5 x = 1$$

$$x = 5$$

41. B

For the point (0, 7).

$$\log_3 x = 0 \quad \text{and} \quad \log_9 y = 7$$

$$x = 1$$

$$y = 9^7$$

A. **X**.
$$x^4y^7 = 9^{56} \neq 3^{56}$$

B.
$$\checkmark$$
. $x^7y^4 = 9^{28} = 3^{56}$

C. **X**.
$$x^7y^8 = 9^{56} \neq 3^{56}$$

D. **X**.
$$x^8y^7 = 9^{49} \neq 3^{56}$$

42. B

Draw the line y = 1. We have 0 < a < b < 1.

- I. X.
- II. X.
- III. \checkmark . Let the equation of ABC be x = k. The coordinates of B and C are $(k, \log_a k)$ and $(k, \log_b k)$ respectively.

$$\frac{BC}{AB} = \frac{\log_a k - \log_b k}{-\log_a k}$$

$$= \frac{\frac{\log k}{\log a} - \frac{\log k}{\log b}}{-\frac{\log k}{\log a}}$$

$$= \frac{\log a}{\log b} - 1$$

$$= \log_b a - \log_b b$$

$$= \log_b \frac{a}{b}$$

