REG-EOSL-2324-ASM-SET 3-MATH

Suggested solutions

Multiple Choice Questions

- 1. A
- 2. B
- 3. C
- 4. A
- 5. B

- 6. A
- 7. D
- 8. C
- 9. C
- 10. A

- 11. C
- 12. B
- 13. C
- 14. A
- 15. A

- 16. A
- 17. D
- 18. A
- 19. A
- 20. A

- 21. B
- 22. D
- 23. D
- 24. A
- 25. A

- 26. B
- 27. B
- 28. D
- 29. D
- 30. C

1. A

Let the x-coordinates of A and B be -3p and 5q respectively. Then A(-3p, 4p) and B(5q, 12q).

$$OA = \sqrt{(3p)^2 + (4p)^2}$$
 and $OB = \sqrt{(5q)^2 + (12q)^2}$

$$OB = \sqrt{(5a)}$$

$$5 = 5p$$

$$13 = 13q$$

$$p = 1$$

$$q = 1$$

Slope of AB = 1. Equation of AB is

$$y - 4 = 1(x+3)$$

$$x - y + 7 = 0$$

2. B

Slope of $L_2 = -2$ and so $m = \frac{1}{2}$

I.
$$\checkmark$$
. y-intercept = $b > 0$

II.
$$\checkmark$$
. $m = \frac{1}{2} > 0$

III. **X**. It is possible that y-intercept = 10, then $b = \frac{1}{10} < \frac{1}{2} = m$.

3. **C**

Let the x-intercept be a. Then the y-intercept is also a.

Slope of the line = $\frac{a-0}{0-a} = -1$

Required equation is

$$y - 5 = -1(x - 3)$$

$$x + y - 8 = 0$$

4. A

Let the coordinates of P be (p, 0).

Consider the slopes.

$$\frac{-3-3}{1-5} = \frac{0-3}{p-5}$$

$$p = 3$$

5. B

Coordinates of A and B are (3, 0) and (0, 6). mid-point of AB is at $\left(\frac{3}{2}, 3\right)$.

Slope of
$$L_2 = \frac{3}{\left(\frac{3}{2}\right)} = 2$$

Equation of L_2 is $y = 2x$, i.e., $2x - y = 0$.

6. A

y-intercept of $L_2 = 2 \times \tan(180^{\circ} - 90^{\circ} - 30^{\circ}) = 2\sqrt{3}$

7. D

$$\frac{-k}{4} \times \frac{6}{9} = -1$$

$$k = 6$$

L: 6x + 4y - 12 = 0. The y-intercept is 3.

8. **C**

$$\frac{x}{3} - \frac{y}{4} = 1$$

$$y = \frac{4x}{3} - 4$$
Slope = $\frac{4}{3}$

Slope =
$$\frac{4}{3}$$

Only option C is a straight line with slope $\frac{4}{3}$.

9. **C**

$$5h - 2(4) - 2 = 0$$

$$h=2$$

Equation of L is in the form 2x + 5y + k = 0, where k is a constant.

$$2(2) + 5(4) + k = 0$$

$$k = -24$$

Equation of L is 2x + 5y - 24 = 0.

10. A

$$\begin{cases} 2x + y - 13 = 0 \\ 3x + 2y - 3 = 0 \end{cases}$$

The coordinates of S are (23, -33).

11. **C**

Let the coordinates of P be (p, 0).

$$\frac{-3 - 0}{3 - p} = \frac{1 + 3}{7 - 3}$$
$$p = 6$$

Slope of required line = $\frac{3-0}{0-6} = -\frac{1}{2}$ Required equation is

$$y - 3 = -\frac{1}{2}(x - 0)$$
$$x + 2y - 6 = 0$$

12. **B**

The coordinates of B' are (3, 4).

Let the coordinates of D be (0, d).

A, D and B are collinear.

$$\frac{4-0}{-3-1} = \frac{d-0}{0-1}$$
$$d = 1$$

Slope of
$$B'D = \frac{4-1}{3-0} = 1$$

Slope of
$$B'D = \frac{4-1}{3-0} = 1$$

Equation of $B'D$ is $y = x + 1$.
Slope of $BC = \frac{4-2}{-3-3} = -\frac{1}{3}$

Equation of BC

$$y - 2 = -\frac{1}{3}(x - 3)$$

$$x + 3y - 9 = 0$$

Solve
$$\begin{cases} x + 3y - 9 = 0 \\ y = x + 1 \end{cases}$$
, we have $x = \frac{3}{2}$ and $y = \frac{5}{2}$.

Required coordinates are $\left(\frac{3}{2}, \frac{5}{2}\right)$.

13. **C**

Solve
$$\begin{cases} -2x + 3y - 10 = 0 \\ 3x - 2y - 5 = 0 \end{cases}$$
, we have $x = 7$ and $y = 8$.

Slope of
$$AB = \frac{8-1}{7+1} = \frac{7}{8}$$

$$y - 8 = \frac{7}{8}(x - 7)$$

$$7x - 8y + 15 = 0$$

14. A

Let the coordinates of P be (a, b).

Since *P* lies on *L*, 3a + 4b + 30 = 0.

When P is nearest to R, $PR \perp L$.

$$\frac{b-3}{a-1} \times \frac{-3}{4} = -1$$

$$4a - 3b + 5 = 0$$

Solving, we have
$$(a, b) = \left(-\frac{22}{5}, -\frac{21}{5}\right)$$
.

Solving, we have
$$(a, b) = \left(-\frac{22}{5}, -\frac{21}{5}\right)$$
.
Required distance $= \sqrt{\left(1 + \frac{22}{5}\right)^2 + \left(3 + \frac{21}{5}\right)^2} = 9$

15. A

Solve
$$\begin{cases} y = 2x + 5 \\ x - 2y = 5 \end{cases}$$
, we have $x = -5$ and $y = -5$.

16. A

Solve
$$\begin{cases} 4x + y + 16 = 0 \\ 3x + 2y + 17 = 0 \end{cases}$$
, we have $x = -3$ and $y = -4$.

Since (-3) + 2(-4) + 11 = 0, x + 2y + 11 = 0 passes through the point of intersection.

17. D

Solve
$$\begin{cases} 2x - 3y + 4 = 0 \\ x + 6y + 5 = 0 \end{cases}$$
, we have $x = -\frac{13}{5}$ and $y = -\frac{2}{5}$.

Required equation is

$$y + \frac{2}{5} = -\frac{1}{2} \left(x + \frac{13}{5} \right)$$

$$5x + 10y + 17 = 0$$

$$8k - 5(-5) + 7 = 0$$
$$k = -4$$

$$ak - (-5) + 3 = 0$$

$$-4a + 8 = 0$$

$$a = 2$$

$$2(k) + (-1) + 3 = 0$$

$$k = -1$$

$$3(-1) + h(-1) + 1 = 0$$

$$h = -2$$

Slope of
$$AC = \frac{-6+2}{8+8} = -\frac{1}{4}$$

Equation of AC is

$$y + 6 = -\frac{1}{4}(x - 8)$$

$$x + 4y + 16 = 0$$

Solve
$$\begin{cases} x + 4y + 16 = 0 \\ 3x - 4y - 12 = 0 \end{cases}$$
, the coordinates of C are $\left(-1, -\frac{15}{4}\right)$.

Consider the *x*-intercepts of two lines.

The coordinates of A and B are (-16, 0) and (4, 0) respectively.

Required area =
$$\frac{(4+16)\left(\frac{15}{4}\right)}{2}$$
$$= 37.5$$

21. **B**

$$2x + 3(2) + 6 = 0$$
 and $2(0) + 3y + 6 = 0$

$$x = -6 y = -2$$

The coordinates of A and C are (-6, 2) and (0, -2) respectively.

Required area =
$$\frac{(0+6)(2+2)}{2}$$

$$= 12$$

$$x$$
-intercept = 18 and y -intercept = 6.

Required area =
$$\frac{(18)(6)}{2}$$

$$= 54$$

23. D

Solve
$$\begin{cases} 2x + y = 0 \\ x - y + 3 = 0 \end{cases}$$
, we have $x = -1$ and $y = 2$.

$$3(-1) - 2 + k = 0$$

$$k = 5$$

24. A

Solve
$$\begin{cases} 2x + 3y - 7 = 0 \\ x - 3y - 5 = 0 \end{cases}$$
, we have $x = 4$ and $y = -\frac{1}{3}$.

 L_2 and L_3 intersect at $\left(4, -\frac{1}{3}\right)$.

If three lines intersect at a point, then L_1 passes through $\left(4, -\frac{1}{3}\right)$.

$$7(4) + k\left(-\frac{1}{3}\right) - 31 = 0$$

$$k = -9$$

25. A

Solve
$$\begin{cases} \frac{3x}{2} + y = 2\\ 2x - 3y = 20 \end{cases}$$
, we have $(x, y) = (4, -4)$.

$$4(4) - 3(-4) + k = 0$$

$$k = -28$$

26. B

Solve
$$\begin{cases} 2x + 5y + 10 = 0 \\ 3x + 2y - 7 = 0 \end{cases}$$
, we have $x = 5$ and $y = -4$.

$$5 + k(-4) - 8 = 0$$

$$k = -\frac{3}{4}$$

27. B

Slope of
$$L = \frac{2}{5}$$

Slope of
$$L = \frac{2}{5}$$

Slope of $L_1 = \frac{4}{10} = \frac{2}{5}$ and slope of $L_2 = -\frac{1}{1} = -1$
Thus, only L_2 has exactly one point of intersection

Thus, only L_2 has exactly one point of intersection with L.

Two straight lines have equal slopes.

$$-\frac{6}{b} = -\frac{1}{2}$$

Two straight lines have equal *x*-intercepts.

$$\frac{3}{6} = \frac{-c}{1}$$
$$c = -\frac{1}{2}$$

29. D

Two straight lines are parallel. They have equal slopes.

$$\frac{4}{a} = \frac{a}{1}$$
$$a^2 = 4$$
$$a = \pm 2$$

- I. \checkmark . Note that $L/\!/L_1$ and they are not coincident.
- II. \checkmark . L and L_2 are not parallel. They intersect at one point only.
- III. X. L_3 : x + 2y 2 = 0 and L coincident.

Conventional Questions

31. (a)
$$2(a) - 3(0) + 12 = 0$$
 1M

$$a = -6$$

(b) Slope of
$$L_1 = \frac{2}{3}$$

Slope of $L_2 = -\frac{3}{2}$

The equation of \tilde{L}_2 is

$$y - 0 = -\frac{3}{2}(x+6)$$
1M

$$3x + 2y + 18 = 0$$

(c) Slope of
$$L_3 = -\frac{3}{2}$$

$$\frac{k}{3} = -\frac{3}{2}$$

$$k = -\frac{9}{2}$$
1M

32. (a)
$$\frac{-2}{-1} = \frac{-4}{k}$$

 $k = -2$

(b) The equation of L_2 is

$$4x - 2y + 6 = 0$$
$$2x - y + 3 = 0,$$
1M

which is identical to L_1 .

Thus, there are infinitely many points of intersection between L_1 and L_2 .

33. (a) (i) Coordinates of
$$B = \left(\frac{0-8}{2}, \frac{-10+14}{2}\right) = (-4, 2)$$
.

Slope of $AC = \frac{14+10}{-8-0} = -3$.

Slope of $BE = \frac{1}{3}$

Equations of $B\vec{E}$ is

$$\frac{y-2}{x+4} = \frac{1}{3}$$

$$3y-6 = x+4$$

$$0 = x - 3y + 10$$

(ii) When
$$x = 0$$
, $y = \frac{10}{3}$.

Thus, the coordinates of E are $\left(0, \frac{10}{3}\right)$.

(b) (i) Slope of
$$AD = \frac{14+2}{-8-0} = -2$$
.
So, equation of AD is $y = -2x - 2$.
Substitute $y = -2x - 2$ into $0 = x - 3y + 10$,

$$0 = x - 3(-2x - 2) + 10$$

$$x = -\frac{16}{7}$$
1M

When
$$x = \frac{-16}{7}$$
, $y = -2\left(\frac{-16}{7}\right) - 2 = \frac{18}{7}$.
The coordinates of F are $\left(-\frac{16}{7}, \frac{18}{7}\right)$.

(ii) Note that area of $\triangle ABE$ = area of $\triangle CBE$ Area of $\triangle EFC$: area of $\triangle CBE = EF$: BE

$$= \left(0 + \frac{16}{7}\right) : (0+4)$$

$$= 4: 7 \neq 1: 2$$
 1A

So, area of $\triangle CBE$ is not twice the area of $\triangle EFC$.

Thus, area of $\triangle EBA$ is not twice the area of $\triangle EFC$.

The claim is disagreed.