REG-EOC-2223-ASM-SET 4-MATH

Suggested solutions

Multiple Choice Questions

1. D

Centre (p, q) lies in quadrant IV. So, p > 0 and q < 0.

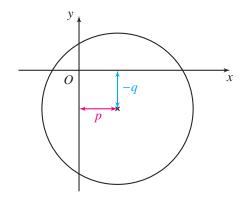
I. **✓**.

II. \checkmark . p-r < 0

(length p is shorter than the radius)

III. \checkmark . $\sqrt{p^2 + q^2} < r$

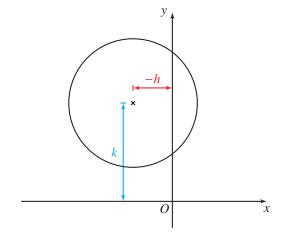
(distance between origin and centre is smaller than the radius)



2. A

Centre lies in quadrant II. Therefore, h < 0 and k > 0.

- I. \checkmark . k + h = k (-h) > 0(distance from *x*-axis is longer than that from *y*-axis)
- II. \checkmark . r h = r + (-h) > 0 (positive lengths)
- III. \mathbf{X} . r k < 0 (radius is shorter than distance from x-axis)



3. D

I. Radius =
$$\sqrt{3^2 + 4^2 - 10} = \sqrt{15}$$

II. Radius =
$$\sqrt{4^2 + 3^2 - 10} = \sqrt{15}$$

III. Radius =
$$\sqrt{5^2 - 10} = \sqrt{15}$$

All circles have the same area.

The answer is D.

1

C:
$$x^2 + y^2 + 3x + 4y - \frac{25}{2} = 0$$

Centre $\left(-\frac{3}{2}, -2\right)$
Radius = $\sqrt{\left(\frac{3}{2}\right)^2 + 2^2 + \frac{25}{2}} = \frac{5\sqrt{3}}{2}$

5. C

Centre
$$\left(-\frac{k}{2}, -\frac{k+1}{2}\right)$$

$$-\frac{k}{2} - \frac{k+1}{2} + 1 = 0$$

$$k = \frac{1}{2}$$

6. A

L passes through centre of circle $\left(\frac{k}{-2}, -2\right)$.

$$\frac{3 - (-2)}{16 - \frac{k}{-2}} = \frac{1}{2}$$

$$k = -12$$

7. D

Diameter passes through centre (4, 3). $\frac{-5-3}{k-4} = -4$

$$\frac{-5 - 3}{k - 4} = -4$$

$$k = 6$$

Let the centre of *S* be *G*. The coordinates of *G* are (1, 2). Note that $GM \perp AB$. Slope of $GM = \frac{2+2}{1-3} = -2$

Slope of
$$GM = \frac{2+2}{1-3} = -2$$

Slope of
$$AB = \frac{1}{2}$$

Required equation is

$$y + 2 = \frac{1}{2}(x - 3)$$
$$x - 2y - 7 = 0$$

Radius =
$$\sqrt{1^2 + 2^2 + 4} = 3$$

Required area = $4 \times \frac{(3)(3)}{2}$

$$= 18$$

2

10. **C**

Distance between centres = $\sqrt{(3+3)^2 + (7+1)^2}$

$$= 10$$

$$= 8 + 2$$

The two circles touch each other externally.

11. D

Substitute the coordinates of the points into L.H.S. of the equation.

A.
$$10^2 + 6^2 - 8(10) + 4(6) - 16 = 64 > 0$$
. W lies outside the circle.

B.
$$8^2 + 8^2 - 8(8) + 4(8) - 16 = 80 > 0$$
. X lies outside the circle.

C.
$$6^2 + 6^2 - 8(6) + 4(6) - 16 = 32 > 0$$
. Y lies outside the circle.

D.
$$9^2 + 0 - 8(9) - 16 = -7 < 0$$
. Z lies inside the circle.

12. **C**

I. \checkmark . The coordinates of the centre are (-1, 0).

The centre lies on the x-axis.

II.
$$\checkmark$$
. Radius = $\sqrt{9}$ = 3

III.
$$X$$
. When $y = 0$,

$$(x+1)^2 + 0 = 9$$

$$x = 2$$
 or -4

The circle intersects the x-axis at (2, 0) and (-4, 0).

13. **C**

$$C_2$$
: $x^2 + y^2 + 6x - 8y + \frac{25}{2} = 0$

I.
$$\checkmark$$
. G_1 (8, -6), G_2 (-3, 4). $OG_1 = 10 = 2OG_2$

II. **X**.
$$m_{OG_1} \times m_{OG_2} = \frac{-6}{8} \times \frac{4}{-3} \neq -1$$

III.
$$\checkmark$$
. Radius of $C_1 = \sqrt{8^2 + 6^2 - 75} = 5$, radius of $C_2 = \sqrt{3^2 + 4^2 - \frac{25}{2}} = \frac{5}{\sqrt{2}}$

Ratio of area of C_1 to area of C_2 is $5: \left(\frac{5}{\sqrt{2}}\right)^2 = 2:1$.

14. **C**

$$C_1$$
: $x^2 + y^2 + 2x + 4y - \frac{149}{2} = 0$.

I. \checkmark . $(-1)^2 + (2)^2 - 8(-1) - 20(2) - 53 = 0$. It lies on C_2 .

II. **X**. Radius of
$$C_1 = \sqrt{1^2 + 2^2 + \frac{149}{2}} = \sqrt{79.5}$$
 and radius of $C_2 = \sqrt{4^2 + 10^2 + 53} = 13$.

III. \checkmark . Distance between centre = 13, which lies between sum and difference of their radii, i.e., $13 - \sqrt{79.5}$ and $13 + \sqrt{79.5}$.

So, they intersect at two distinct points.

15. D

$$C: x^2 + y^2 - 3x + y - \frac{13}{2} = 0$$

I. **X**. Centre $\left(\frac{3}{2}, -\frac{1}{2}\right)$

II.
$$\checkmark$$
. $AB = \sqrt{(2-1)^2 + (1+2)^2} = \sqrt{10}$
Radius $= \sqrt{\left(\frac{3}{2}\right)^2 + \left(\frac{1}{2}\right)^2 + \frac{13}{2}} = 3 < AB$

III. \checkmark . Slope of $AB = \frac{1+2}{2-1} = 3$

Slope of $AG = \frac{-2 + \frac{1}{2}}{1 - \frac{3}{2}} = 3$, where G is the centre.

Thus, three points are collinear.

16. B

I.
$$\checkmark$$
. Radius = $\sqrt{3^2 + 6^2 + 4} = 7$

II. X. Centre (3, -6) lies in the fourth quadrant.

III.
$$\checkmark$$
. $0^2 + 0^2 - 6(0) + 12(0) - 4 = -4 < 0$

The origin lies inside the circle.

17. D

I.
$$\checkmark$$
. $G_1(-2, 6), G_2(2, 4)$. Slope of $OG_2 \times \text{slope of } G_1G_2 = \frac{4}{2} \times \frac{6-4}{-2-2} = -1$

II.
$$\checkmark$$
. Distance between centres = $\sqrt{(2+2)^2 + (6-4)^2} = \sqrt{20}$
Radius of $C_1 = \sqrt{2^2 + 6^2 + 40} = \sqrt{80} = 2\sqrt{20}$; radius of $C_2 = \sqrt{2^2 + 4^2} = \sqrt{20}$

Since distance between centres = difference in radii, the circles touch each other internally.

III.
$$\checkmark$$
. Area ratio = $\left(\frac{\sqrt{80}}{\sqrt{20}}\right)^2 = 4$

18. **A**

$$x^2 + y^2 - x - \frac{y}{2} + \frac{1}{4} = 0$$

I. X. Centre $\left(\frac{1}{2}, \frac{1}{4}\right)$

II. **X**. Radius =
$$\sqrt{\left(\frac{1}{2}\right)^2 + \left(\frac{1}{4}\right)^2 - \frac{1}{4}} = \frac{1}{4} \neq 2$$

III. \checkmark . Radius = $\frac{1}{4}$ = y-coordinate of centre. So, the circle touches the x-axis.

19. **C**

$$C_2$$
: $x^2 + y^2 + 6x - 8y + \frac{33}{2} = 0$
 G_1 (4, 3) and G_2 (-3, 4).

I. \checkmark . Slope of $G_1O \times$ slope of $G_2O = \frac{3}{4} \times \frac{4}{-3} = -1$

II. **X**. Radius of $C_1 = \sqrt{4^2 + 3^2 - 20} = \sqrt{5}$ and radius of $C_2 = \sqrt{3^2 + 4^2 \frac{33}{2}} = \sqrt{8.5} > \sqrt{5}$ So, area of C_1 is smaller than the area of C_2 .

III.
$$\checkmark$$
. $OG_1 = OG_2 = \sqrt{3^2 + 4^2} = 5$

20. A

$$x^2 + y^2 - 9x + 8y - \frac{1}{2} = 0$$

I.
$$\checkmark$$
. $0 + y^2 - 0 + 8y - \frac{1}{2} = 0$

$$y \approx 0.0620$$
 or -8.06

The circle intersect y-axis at two points.

II. **X**. Coordinates of centre are $\left(\frac{9}{2}, -4\right)$.

III. **X**. Sub (0, 0), L.H.S. = $-\frac{1}{2} < 0$. Origin lies inside the circle.

21. **C**

I. X. The coordinates of the centres of C_1 and C_2 are (-4, 3) and (4, -3) respectively. They are not concentric circle.

II. \checkmark . Radius of both circles = $\sqrt{4^3 + 3^2 + 25} = \sqrt{50}$ The lengths of diameters are the same.

III. \checkmark . Distance between the centre and the y-axis is 4, which is smaller than the radius. Both C_1 and C_2 cut the y-axis at two distinct points.

22. A

- I. \checkmark . Radius of $C_1 = \sqrt{3^2 + 4^2} = 5$; radius of $C_2 = \sqrt{25} = 5$
- II. \checkmark . Distance between centres = $\sqrt{(3-0)^2 + (0+4)^2} = 5$
- III. X. (0, 0) does not satisfy the equation of C_2 . C_2 does not pass through the origin.

23. D

- I. \checkmark . (0, 0) satisfies the equation.
- II. X. The coordinates of the centre are (0, -4). It does not lie on the *x*-axis.
- III. \checkmark . Radius = $\sqrt{0^2 + 4^2 0} = 4$ Distance between centre and *x*-axis is equal to the radius. *C* touches the *x*-axis.

24. **C**

Denote the centre by G.

Let M be a point on the x-axis such that GM is perpendicular to the x-axis.

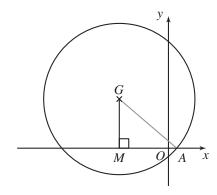
Let A be the intersection of the circle and the positive x-axis.

The coordinates of M are (-3, 0).

$$AM = \frac{8}{2} = 4$$
 and the coordinates of A are $(1, 0)$.

Radius of circle =
$$\sqrt{(1+3)^2 + (0-3)^2} = 5$$

Required equation is $(x + 3)^2 + (y - 3)^2 = 25$.



Conventional Questions

25. (a)
$$(x-6)^2 + (y+5)^2 = 6^2 + 5^2$$
 1M
 $(x-6)^2 + (y+5)^2 = 61$ 1A
(b) (i) $H = (12, 0)$ and $K = (0, -10)$ 1A+1A
(ii) O, P and Q are collinear. 1A
(iii) Required area = 12×10 1M
= 120 1A

26. (a) Since
$$FB = FE$$
, $\angle FBE = \angle FEB$.

$$\angle FCA = \frac{1}{2} \angle FEA$$
In $\triangle ABC$,

$$\angle ABC + \angle BCA = \angle CAE$$

$$\angle ABC + \frac{1}{2} \angle ABC = \theta$$

$$\angle ABC = \frac{2\theta}{3}$$
1M
1A

(b) (i)
$$\angle ABC = \frac{2}{3}(45^{\circ}) = 30^{\circ}$$
 1M
 $BE = \frac{CE}{\tan 30^{\circ}} = \sqrt{3}CE \text{ and } AE = \frac{CE}{\tan 45^{\circ}} = CE$

$$AB = BE - AE$$

$$0 - (1 - \sqrt{3}) = CE(\sqrt{3} - 1)$$

$$CE = 1$$
1M

Coordinates of
$$C = (0 + 1, 0 + 1) = (1, 1)$$

Coordinates of $D = (0 + 1 + 1, 0) = (2, 0)$

(ii) Equation of circle *ADCF* is
$$(x-1)^2 + y^2 = 1$$

27. (a)
$$y^2 - 12y + 32 = 0$$

$$y = 4$$
 or 8

Coordinates of A are (0, 4).

(b)
$$c = 4$$

Coordinates of
$$P$$
 are $(6, 6)$.

Slope of
$$AP = \frac{6-4}{6-0} = \frac{1}{3}$$

Slope of
$$L = m = -3$$

(c) Let the x-coordinate of B be b.

Since B lies on y = -3x + 4, the coordinates of B are (b, -3b + 4).

$$\sqrt{b^2 + (-3b + 4 - 4)^2} = \sqrt{(0 - 6)^2 + (4 - 6)^2}$$

$$b^2 + 9b^2 = 40$$
1M

$$b = 2$$
 or -2 (rejected)

The coordinates of B are (2, -2).

The equation of C_2 is

$$(x+10)^2 + (y+6)^2 = (2+10)^2 + (-2+6)^2$$
1M

$$(x+10)^2 + (y+6)^2 = 160$$

28. (a)
$$OQ = OP = r$$
 1A

$$AP = AQ = 4 - r \text{ and } BP = BR = 3 - r$$

$$1M+1A$$

(b)
$$(3-r) + (4-r) = \sqrt{3^2 + 4^2}$$

The coordinates of
$$C$$
 are $(1, 1)$.

(c) The equation of the circle is

$$(x-1)^2 + (y-1)^2 = 1^2$$

$$x^2 + y^2 - 2x - 2y + 1 = 0$$

1A

29. (a) Let the equation of circle be $x^2 + y^2 + Dx + Ey + F = 0$, where D, E and F are constants. 1A

$$\begin{cases} 1+4+D+2E+F=0 & (1) \\ 9+3E+F=0 & (2) \text{ 1M} \\ 16+4D+F=0 & (3) \end{cases}$$

Consider (2) - (1) and (3) - (2).

$$\begin{cases}
-D + E = -4 \\
4D - 3E = -7
\end{cases}$$
1M

Solving, we have D = -19, E = -23.

When D = -19, E = -23, F = -9 - 3(-23) = 60.

The equation of the circle is $x^2 + y^2 - 19x - 23y + 60 = 0$.

- (b) Centre of the circle = $\left(\frac{19}{2}, \frac{23}{2}\right)$ 1A Radius of the circle = $\sqrt{\left(\frac{19}{2}\right)^2 + \left(\frac{23}{2}\right)^2 - 60} = \frac{5\sqrt{26}}{2}$ 1A
- (c) If two points on the circle form a diameter, then the midpoint of them must be at the centre of circle.

Midpoint of
$$AB = \left(\frac{1}{2}, \frac{5}{2}\right)$$

Midpoint of $BC = \left(2, \frac{3}{2}\right)$

Midpoint of $CA = \left(\frac{5}{2}, 1\right)$

None of the above is at the centre of the circle.

Thus, the claim is incorrect.