REG-2223-MOCK-SET 6-MATH-CP 2

Answers:

- 1. B 7. C 2. C 3. C 4. A 5. B 6. B 8. D 9. D 10. B 11. B 12. D 13. A 14. D 15. C 16. D 17. A 18. B 19. A 20. A 22. D 21. A 23. A 27. A 24. C 25. C 26. C 28. C 29. B 30. D 31. A 32. B 33. A 34. D 36. A 37. B 38. D 40. D 35. C 39. B
- 41. C 42. B 43. C 44. D 45. C

Suggested Solutions:

1. B
$$\frac{9^{3x+1}}{27^{2x+1}} = \frac{3^{6x+2}}{3^{6x+3}}$$

$$= \frac{1}{3}$$

2. **C**

Check the coefficient of each term.

$$\underline{-2b}$$
 $\underline{-4a}$

- A. **X**
- B. ✓
- C. 🗸 🗸
- D. **X**

3.
$$\boxed{\mathbf{C}}$$
Solve
$$\begin{cases} 2x + y = 5 \\ 3x - 2y + 1 = 5 \end{cases}$$
, we have $x = 2$ and $y = 1$.

4. A

Put
$$x = -1$$
,

 $0 - 3 = (-1 + 2)^2 + \beta$
 $\beta = -4$

1

$$x = 2 - \frac{y+1}{y}$$

$$xy = 2y - (y+1)$$

$$y(x-1) = -1$$

$$y = \frac{1}{1 - x}$$

- 6. B
- A. **X**. 0.001 is of 3 decimal places.
- В. 🗸.
- C. X. x = 0.001 (correct to 3 decimal places)
- D. X. 0.0012 has only 2 significant figures.
- 7. **C**

The inequalities become $x \le 7$ or x < -6.

Thus, $x \le 7$.

The greatest integer is 7.

$$f(\alpha) - f(\alpha - 1) = 5[(\alpha)^2 - (\alpha - 1)^2] - (1 - 1)$$
$$= 5(2\alpha - 1)$$
$$= 10\alpha - 5$$

$$g\left(\frac{1}{2}\right) = \frac{k}{8} - \frac{5}{4} - k + 3 = 0$$

$$k = 2$$

$$k = 2$$

 $g(-2) = 2(-8) - 5(4) - 4(-2) + 3 = -25$

10. B

I. **X**. When
$$x = 3$$
, $y = (-3 + 1)^2 + 2 = 6 \neq -2$.

II.
$$\checkmark$$
. Coefficient of $x^2 = (-1)^2 = 1 > 0$. The graph opens upwards.

III. **X**. y-intercept =
$$(0+1)^2 + 2 = 3 \neq 2$$

11. **B**

Let the cost of the handbag be \$x.
Percentage profit =
$$\frac{x(1+50\%)(1-20\%) - x}{x} \times 100\%$$
= 20%

12. D

Let
$$a = 6$$
, then $b = \frac{2a}{3} = 4$ and $c = \frac{2a}{4} = 3$.
Thus, $a : b : c = 6 : 4 : 3$.

13. A

Let $p = \frac{kr}{a^2}$, where k is a non-zero constant.

$$\frac{p_2}{p_1} = \frac{1 - 10\%}{(1 + 20\%)^2}$$
$$= 0.625$$

p is decreased by 37.5%.

14. D

The numbers are formed by +2, +4, +6, ...

The sequence is 4, 6, 10, 16, 24, 34, 46, 60.

Required number is 60.

15. **C**

$$(2q)^2(3p) = 648$$

$$pq^2 = 54$$

Required volume =
$$\frac{1}{3}(3q)^2(2p)$$

= $6pq^2$
= 324 cm^3

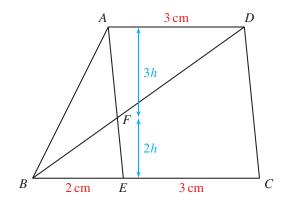
Let
$$BE = 2$$
 cm. Then $CE = AD = 3$ cm.

$$\triangle ADF \sim \triangle EBF \text{ (ratio} = 3:2)$$

Required ratio

$$= \frac{(3)(5h)}{2} : \left[(3)(5h) - \frac{(3)(3h)}{2} \right]$$

= 5 : 7



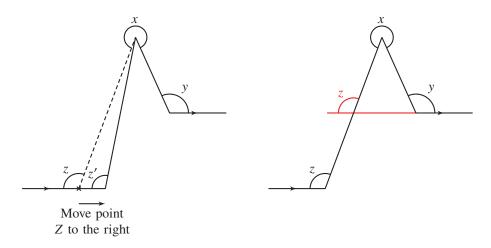
17. A

$$\angle AOB = 2\angle ACB = 40^{\circ} \text{ and } \angle BOC = 140^{\circ} - 40^{\circ} = 100^{\circ}$$

Required area = $\pi(6)^2 \times \frac{100^{\circ}}{360^{\circ}} - \frac{1}{2}(6)^2 \sin 100^{\circ}$
 $\approx 14 \text{ cm}^2$

18. **B**

Move point Z to the right as shown in the figure.



Angle z becomes smaller and angle x becomes larger.

- I. X. z decreases while y remains unchanged. They cannot be always equal.
- II. X. Since z decreases and x increases, the size of y + z x decreases upon the movement of point Z.

So, it cannot be always equal to 180°.

III.
$$\checkmark$$
. $(180^{\circ} - z) + (360^{\circ} - x) = y$
 $x + y + z = 540^{\circ}$

$$\angle BAC = 32^{\circ} + 60^{\circ} = 92^{\circ}$$

Since $AB = AC$, $\angle ACB = \frac{180^{\circ} - 92^{\circ}}{2} = 44^{\circ}$
 $\angle DEC = \angle ADE - \angle ECF = 60^{\circ} - 44^{\circ} = 16^{\circ}$

Let
$$AB = 1$$
. Then $CD = AB = 1$.
$$\frac{BF}{CE} = \frac{1}{\sin \beta} \div \frac{1}{\sin \alpha}$$

$$= \frac{\sin \alpha}{\sin \beta}$$

5

21. A

Let
$$BD = x \text{ cm}$$
.

Then
$$DE = \frac{42}{3}$$
 cm

Let
$$BD = x$$
 cm.
Then $DE = \frac{42}{x}$ cm.
Since $\triangle EFC \sim \triangle ABC$,

$$\frac{x}{\left(20 - \frac{42}{x}\right)} = \frac{AB}{BC}$$

$$2x = 20 - \frac{42}{x}$$

$$2x^2 - 20x + 42 = 0$$

$$x = 3$$
 or 7

Required length = 3 cm

22. D

I. \checkmark . Since ABCD is a parallelogram, $\angle BAD = \angle BCD$.

$$360^{\circ} - \angle BCD = 2 \angle BAD$$

$$360^{\circ} - \angle BAD = 2\angle BAD$$

$$\angle BAD = 120^{\circ}$$

II. \checkmark . Since ABCD is a parallelogram, AB = CD and AD = BC.

Since BC = CD, the four sides of ABCD are equal and it is a rhombus.

III. \checkmark . Since AB = AD, $\widehat{AB} : \widehat{AD} = 1 : 1$.

23. A

x-intercept =
$$\frac{5}{b}$$
 and y-intercept = $\frac{5}{a}$.
Note that a and b are positive.

$$\frac{5}{b} < 2$$
 and $\frac{1}{2} \times \frac{5}{b} \times \frac{5}{a} > 4$

$$b > \frac{5}{2}$$

$$ab < \frac{25}{8}$$

- I. **✓**.
- II. ✓.
- III. X. Take a = 1 and b = 3. These values of a and b satisfy all the conditions above but 2a < b.

Two lines are parallel.

$$\frac{-2}{3} = \frac{-6}{k}$$

$$k = 9$$

y-intercept = $\frac{k}{3}$ = 3

$$(-2, -5) \leftarrow B(-2, 5) \leftarrow A(-2, 2) = \left(2\sqrt{2}, 135^{\circ}\right)$$

The locus of P is a pair of straight lines, y = -1 and y = 11.

$$x^2 + y^2 + 2x + 4y + \frac{4}{3} = 0$$

I. \mathbf{X} . x-coordinate of centre = -1

II. \checkmark . $0^2 + 0^2 + 0 + 0 + \frac{4}{3} > 0$. The origin lies outside C.

III. **X**. Radius =
$$\sqrt{1^2 + 2^2 - \frac{4}{3}} \neq 1$$

Required probability =
$$1 - \left(\frac{4}{7}\right)^2$$

= $\frac{33}{49}$

Let the ratio of number of boys to girls be
$$1:\beta$$
, where $0<\beta<1$.
Mean = $\frac{60(1)+70(\beta)}{1+\beta}=60+\frac{10\beta}{1+\beta}=65+\frac{5\beta-5}{1+\beta}$

Since $\frac{10}{1+\beta} > 0 > \frac{5\beta - 5}{1+\beta}$, the mean of the test marks lies between 60 and 65. Only option B satisfies this.

- 30. D
- A. X. Mode = 3
- B. X. Median = 3
- C. X. Lower quartile = 2.5
- D. 🗸.
- 31. A

Slope of the graph = -4 and $y^3 = -4 \log_5 x + 12$.

$$2^3 = -4\log_5 x + 12$$

$$\log_5 x = 1$$

$$x = 5$$

32. B

$$y = f(x) \longrightarrow y = f(-x) \longrightarrow y = f(-2x)$$

Reflect about y-axis.

Reduce along *x*-axis to $\frac{1}{2}$ times the original.

The answer is B.

33. A

$$\pi^{2x} - 9\pi^x + 20 < 2$$

$$(\pi^x)^2 - 9\pi^x + 18 < 0$$

$$3 < \pi^x < 6$$

$$\log 3 < x \log \pi < \log 6$$

$$\frac{\log 3}{\log \pi} < x < \frac{\log 6}{\log \pi}$$

$$\log_{\pi} 3 < x < \log_{\pi} 6$$

34. D

$$512 = 200_{16}$$

$$11 \times 8^{16} = 11 \times 2^{48} = 11 \times 16^{12} = B00000000000000_{16}$$

The answer is D.

8

Put
$$k = 2$$
.

$$\frac{i^{2020}}{k+i^{2019}} = \frac{1}{2+i^3}$$
$$= \frac{1}{2-i}$$
$$= \frac{2}{5} + \frac{1}{5}i$$

Imaginary part = $\frac{1}{5}$

Only option C gives $\frac{1}{5}$ when k = 2.

36. A

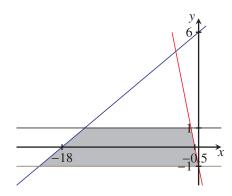
Line	x-intercept	y-intercept
x - 3y + 18 = 0	-18	6
2x + y + 1 = 0	$-\frac{1}{2}$	-1
y = -1		-1
y = 1		1

Sketch the graph using the intercepts.

Value of o5x - 2y + k is greater when x is larger and y is smaller, i.e., the bottom right corner.

The coordinates of the bottom right corner are (0, -1).

$$0 - 2(-1) + k = 12$$
$$k = 10$$



37. B

I.
$$\checkmark$$
. General term = $(1 - 2^{-n}) - (1 - 2^{-(n-1)})$
= $2^{-n}(-1 + 2)$
= 2^{-n}

We have $2^{-n} < 1$ for all positive integers n.

II. **X**. The *n*th term = $\frac{1}{2^n}$ is a rational number for all positive integers *n*.

III.
$$\checkmark$$
. $\log T_{n+1} - \log T_n = \log 2^{-n-1} - \log 2^{-n}$
= $(-n-1)\log 2 + n\log 2$
= $-\log 2 = \text{constant}$

Thus, it is an arithmetic sequence.

38. D

Solve the system
$$\begin{cases} x - y + m = 0 \\ x^2 + y^2 + 2x - 4y - 13 = 0 \end{cases}$$
 using the calculator program.

Value of m	Number of intersections	Sign of Δ
-9	0	-

Required range does not contain m = -9 and -9 is not a boundary value of the required range. The answer is D.

39. B

Since
$$DQ = AQ$$
, $\angle ADQ = \frac{180^{\circ} - 50^{\circ}}{2} = 65^{\circ}$.
 $\angle ACD = \angle ADQ = 65^{\circ}$
 $\angle ADC = 180^{\circ} - 100^{\circ} = 80^{\circ}$ and $\angle CAD = 180^{\circ} - 65^{\circ} - 80^{\circ} = 35^{\circ}$
Since $BC = CD$, $\angle BAC = \angle CAD = 35^{\circ}$.
 $\angle DCE = \angle BAD = 35^{\circ} + 35^{\circ} = 70^{\circ}$
 $\angle CED = \angle CDQ - \angle DCE = 80^{\circ} + 65^{\circ} - 70^{\circ} = 75^{\circ}$
 $\angle PEB = 180^{\circ} - 75^{\circ} = 105^{\circ}$

40. D

$$2\cos^2\theta = 2 - \sin\theta$$

$$2(1-\sin^2\theta)=2-\sin\theta$$

$$-2\sin^2\theta + \sin\theta = 0$$

$$\sin \theta = 0$$
 or $\frac{1}{2}$

 $\sin \theta = 0 \quad \text{or} \quad \frac{1}{2}$ When $\sin \theta = 0$, $\theta = 0^{\circ}$ or 180° or 360° . When $\sin \theta = \frac{1}{2}$, $\theta = 30^{\circ}$ or 150° .

There are 5 roots.

41. **C**

The straight line x - 2y + 10 = 0 is perpendicular to the straight line 2x + y + a = 0.

The triangle formed is a right-angled triangle. The orthocentre lies at the right-angled vertex.

When x = -6,

$$(-6) - 2y + 10 = 0$$

$$y = 2$$

Substitute (-6, 2) into 2x + y + a = 0,

$$2(-6) + (2) + a = 0$$

$$a = 10$$

42. B

Required probability =
$$\frac{1}{8} + \frac{1}{8} - \frac{6!}{8!}$$

= $\frac{13}{56}$

43. C

Required number =
$$C_2^3 C_1^5 C_1^2 + C_1^3 C_2^5 C_1^2 + C_1^3 C_1^5 C_2^2$$

= 105

44. D

Let the mean and standard deviation be \overline{x} marks and σ marks respectively.

$$\begin{cases} \frac{26 - \overline{x}}{\sigma} = -1\\ \frac{92 - \overline{x}}{\sigma} = 0.5 \end{cases}$$

Solving, we have $\overline{x} = 70$ and $\sigma = 44$.

45. **C**

Median =
$$15 \times 2 + 3 = 33$$

Interquartile range =
$$10 \times 2 = 20$$

Variance =
$$40 \times 2^2 = 160$$