REG-2223-MOCK-SET 3-MATH-CP 2

Answers:

1. C	2. D	3. B	4. C	5. B	6. A	7. C	8. D	9. C	10. A
11. C	12. A	13. B	14. D	15. D	16. A	17. B	18. A	19. B	20. D
21. B	22. C	23. A	24. B	25. D	26. A	27. D	28. C	29. B	30. D
31. B	32. C	33. D	34. C	35. D	36. A	37. C	38. C	39. B	40. A
41. D	42. A	43. B	44. A	45. D					

Suggested Solutions:

1.
$$\boxed{\mathbf{C}}$$

$$(3 \cdot 9^{n-1})^2 = (3 \cdot 3^{2n-2})^2$$

$$= (3^{2n-1})^2$$

$$= 3^{4n-2}$$

2.
$$\boxed{D}$$

$$\frac{x+y}{x} = \frac{1-y}{y}$$

$$xy+y^2 = x - xy$$

$$x(2y-1) = -y^2$$

$$x = \frac{y^2}{1-2y}$$

Consider the coefficient of each term in the expansions.

Constant term x term

A. XB. \checkmark \checkmark C. \checkmark X

4.
$$\boxed{C}$$

$$\left(\frac{\pi}{5}\right)^3 \approx 0.248\,050\,213$$
= 0.2481 (correct to 4 significant figures)

$$2f(-1) + 3 = 2[(-1)^{2012} + 2012(-1) + 2012] + 3$$
$$= 2(1 - 2012 + 2012) + 3$$
$$= 5$$

$$0 = k^3 - k(k^2) + 2k - 4$$

$$k = 2$$

Remainder =
$$(-k)^3 - k(-k)^2 + 2(-k) - 4$$

= $-2k^3 - 2k - 4$
= -24

The inequalities become $x < \frac{1}{4}$ and $x \le -\frac{1}{6}$.

Thus,
$$x \le -\frac{1}{6}$$

Thus, $x \le -\frac{1}{6}$. The greatest value of x is -1.

$$x(x-k) = x - 1$$

$$x^{2} + (-k-1)x + 1 = 0$$

$$\Delta = (-k-1)^{2} - 4(1)(1) = 0$$

$$k^{2} + 2k - 3 = 0$$

$$k = -3 \text{ or } 1$$

The coordinates of vertex are (-a, b).

- I. \checkmark . From the vertex, we have -a < -1. Therefore, a > 1.
- II. X. From the vertex, we have b < 0.

III.
$$\checkmark$$
. y-intercept = $(0 + a)^2 + b = a^2 + b < 1$

$$Cost = \frac{6400 - 420}{1 + 15\%}$$
$$= $5200$$

11. **C**

Let the actual area be $A \text{ cm}^2$.

$$\frac{A}{25} = 4000^2$$

$$A = 4 \times 10^8$$

Actual area =
$$\frac{4 \times 10^8}{100^2}$$
 = $40\,000\,\text{m}^2$

12. **A**

Let $x = \frac{k\sqrt{z}}{y}$, where k is a non-zero constant. Then $k = \frac{xy}{\sqrt{z}}$. Thus, $\frac{x^2y^2}{z} = k^2$ is a constant.

Then
$$k = \frac{xy}{\sqrt{z}}$$

Thus,
$$\frac{x^2y^2}{7} = k^2$$
 is a constant.

13. B

The numbers are formed by +3, +4, +5, ...

The sequence is 4, 7, 11, 16, 22, 29, 37, ...

The required number is 37.

14. D

$$AE = 12 - 5 = 7 \text{ cm}$$

$$DE = \sqrt{12^2 + 5^2} = 13 \text{ cm}$$

$$AD = \sqrt{12^2 + 12^2} \approx 17.0 \,\mathrm{cm}$$

Required perimeter = $AD + 13 + 7 \approx 37.0 \,\text{cm}$

15. D

$$\angle ABE = 180^{\circ} - 132^{\circ} = 48^{\circ}$$

 $\angle AEB = \frac{180^{\circ} - 48^{\circ}}{2} = 66^{\circ}$

$$\angle AEB = \frac{180^{\circ} - 48^{\circ}}{2} = 66^{\circ}$$

$$\angle EAD = \angle A\tilde{EB} = 66^{\circ}$$

$$\angle AED = 180^{\circ} - 2 \times 66^{\circ} = 48^{\circ}$$

$$\angle DEC = 180^{\circ} - 66^{\circ} - 48^{\circ} = 66^{\circ}$$

16. A

Let the height and base radius of the cone be h and r respectively.

$$\frac{1}{3}\pi r^2 h = 2 \times \frac{2}{3}\pi r^3$$
$$h = 4r$$

h: r = 4:1

17. B

Ratio of base radius =
$$\sqrt{\frac{4}{9}}$$

= $\frac{2}{3}$
Required ratio = $\frac{2^3}{3^3 - 2^3}$
= $\frac{8}{19}$

18. A

$$\triangle ABC \sim \triangle BEC$$

Area of $\triangle ABD = 18 \times \frac{1}{3} = 6 \text{ cm}^2$
Let the area of $\triangle BEC$ be $x \text{ cm}^2$.

$$\frac{x}{x+18+6} = \left(\frac{BE}{AB}\right)^2$$
$$x = 8$$

Area of $\triangle ABC = 18 + 6 + 8 = 32 \text{ cm}^2$

19. B

$$AC = \sqrt{1^2 + 1^2} = \sqrt{2} \text{ cm}$$

$$AD = \sqrt{(\sqrt{2})^2 + (\sqrt{2})^2} = 2 \text{ cm}$$
Required area = $\frac{1^2}{2} + \frac{(\sqrt{2})^2}{2} + \frac{2^2}{2}$

$$= \frac{7}{2} \text{ cm}^2$$

20. D

I.
$$\checkmark$$
. $DF = DP = DR$

II. \checkmark . Note that $\triangle DRS$ is also an equilateral triangle.

So,
$$\angle DRS = 60^{\circ}$$
.

Since
$$DF = DR$$
, $\angle DRF = \angle DFR = \frac{\angle PDF}{2} = 30^{\circ}$.

Thus, RF is the angle bisector of $\angle DRS$

III. \checkmark . Note that $\triangle DPQ$ is also an equilateral triangle.

$$\angle DPQ = \angle DPF = 60^{\circ} \text{ and } \angle PRQ = \angle PRF = 30^{\circ}.$$

Thus,
$$\triangle PQR \cong \triangle PFR$$
 (ASA)

21. B

$$\angle CBE = 90^{\circ} - \alpha$$
 and $\angle BCE = 180^{\circ} - 90^{\circ} - (90^{\circ} - \alpha) = \alpha$

$$CE = \frac{BE}{\tan \alpha} = \frac{\left(\frac{AB}{\cos \alpha}\right)}{\tan \alpha} = \frac{AB}{\cos \alpha \times \frac{\sin \alpha}{\cos \alpha}} = \frac{AB}{\sin \alpha}$$

22. **C**

$$\angle ABC = 180^{\circ} - 68^{\circ} = 112^{\circ}$$

$$\angle ABD = 90^{\circ}$$

$$\angle CBD = 112^{\circ} - 90^{\circ} = 22^{\circ}$$

$$\angle BDC = \angle CBD = 22^{\circ}$$

$$\angle ADB = 68^{\circ} - 22^{\circ} = 46^{\circ}$$

23. A

Note that
$$\angle ACB = 90^{\circ}$$
 and AB is a diameter of the circle.

Note that
$$\angle ACB = 90^{\circ}$$
 and AB is a diameter of the circle.
Required area $= \frac{1}{2} \times \left(\frac{25}{2}\right)^2 \pi - \frac{(7)(24)}{2}$

$$\approx 161 \, \mathrm{cm}^2$$

24. B

$$(2, 120^{\circ}) = \left(-1, \sqrt{3}\right) \longrightarrow \left(-1, -\sqrt{3}\right)$$

25. D

I.
$$\checkmark$$
. Slope of $L_1 = -\frac{1}{A} < 0$. So, $A > 0$.

II.
$$\checkmark$$
. Slope of $L_2 = -\frac{1}{C}$.

$$\left(\frac{-1}{A}\right)\left(\frac{-1}{C}\right) = -1$$

$$AC = -1$$

III.
$$\checkmark$$
. *x*-intercept of $L_1 = B$ and *x*-intercept of $L_2 = D$. Thus, $B > D$.

26. A

$$\frac{a}{c} = \frac{b}{5} = \frac{2}{-1}$$

Thus, $a = -2c$ and $b = -10$.

$$2a + 3b + 4c = 2(a + 2c) + 3b = -30$$

27. D

C:
$$x^2 + y^2 - 3x + y - \frac{13}{2} = 0$$

I. **X**. Centre
$$\left(\frac{3}{2}, -\frac{1}{2}\right)$$

II.
$$\checkmark$$
. $AB = \sqrt{(2-1)^2 + (1+2)^2} = \sqrt{10}$
Radius $= \sqrt{\left(\frac{3}{2}\right)^2 + \left(\frac{1}{2}\right)^2 + \frac{13}{2}} = 3 < AB$

III.
$$\checkmark$$
. Slope of $AB = \frac{1+2}{2-1} = 3$

Slope of $AG = \frac{-2 + \frac{1}{2}}{1 - \frac{3}{2}} = 3$, where G is the centre.

Thus, three points are collinear.

28. C

Required probability =
$$\frac{3+5}{6^2}$$

= $\frac{2}{9}$

29. B

50% of the data lies between lower quartile and upper quartile.

30. D

We have m = n = 5.

I. 🗸

II.
$$\checkmark$$
. Mean = $\frac{1+2+5+12+...+5}{10} = 5.2$

III. \checkmark . Range = 12 - 1 = 11

31. B

$$1 - \frac{ab}{a^2 - b^2} - \frac{b}{b - a} = \frac{(a^2 - b^2) - ab + b(a + b)}{(a + b)(a - b)}$$
$$= \frac{a^2}{a^2 - b^2}$$

32. **C**

For the point (0, -1),

$$\log_7 x = 0 \quad \text{and} \quad \log_7 y = -1$$
$$x = 1 \qquad \qquad y = 7^{-1}$$

We have $7^{-1} = a(1)^b$, and $a = \frac{1}{7}$. For the point (2, 0),

$$\log_7 x = 2 \quad \text{and} \quad \log_7 y = 0$$
$$x = 49 \quad y = 1$$

We have $1 = \frac{1}{7}(49)^b$, and $b = \frac{1}{2}$.

33. D

Each digit in hexadecimal number corresponds to four digits in its binary representation. $F6_{16} = 11110110_2$ and $14_{16} = 10100_2$

Thus, $14F6_{16} = 1010011110110_2$.

34. C

Put k = 1, using the calculator CMPLX mode,

$$\frac{5k+10i}{1-2i} = \frac{5+10i}{1-2i} = -3+4i$$

Imaginary part = 4

Only option C gives 4 when k = 1.

 α is a root of the equation.

$$2\alpha^{2} + 4\alpha - 1 = 0$$

$$\alpha^{2} = -2\alpha + \frac{1}{2}$$

$$\alpha^{2} - 2\beta = \left(-2\alpha + \frac{1}{2}\right) - 2\beta$$

$$= -2(\alpha + \beta) + \frac{1}{2}$$

$$= -2(-2) + \frac{1}{2}$$

$$= \frac{9}{2}$$

36. A

General term =
$$(2^{n+1} - 2) - (2^n - 2)$$

= $2^n(2 - 1)$
= 2^n

I.
$$\checkmark$$
. $\frac{T(n+1)}{T(n)} = \frac{2^{n+1}}{2^n} = 2 = \text{constant.}$

II.
$$\mathbf{X}$$
. Second term = $2^2 = 4 \neq 6$.

37. **C**

Let K be a point on VB such that $AK \perp VB$. We have $CK \perp VB$ also.

Required angle is $\angle AKC$.

$$AC = \sqrt{12^2 + 12^2} = 12\sqrt{2} \text{ cm}$$

 $VA = VB = VC = \sqrt{8^2 + \left(\frac{12\sqrt{2}}{2}\right)^2} = \sqrt{136} \text{ cm}$

In $\triangle VAB$,

$$\cos \angle ABV = \frac{\left(\frac{12}{2}\right)}{VB}$$
$$\angle ABV \approx 59.0^{\circ}$$

$$AK = CK = 12 \sin \angle ABV \approx 10.3 \text{ cm}$$

In $\triangle AKC$,

$$AC^{2} = AK^{2} + CK^{2} - 2(AK)(CK)\cos \angle AKC$$
$$\angle AKC \approx 111^{\circ}$$

$$g(x) = -\frac{1}{2}f(x)$$

The graph of y = f(x) is reduced along the y-axis to $\frac{1}{2}$ times the original and then is reflected about the x-axis to the graph of y = g(x).

The answer is C.

39. B

Line	x-intercept	y-intercept
x = 4	4	
y = 1		1
3x - y = 23	7.67	-23
x - 5y + 11 = 0	-11	2.2

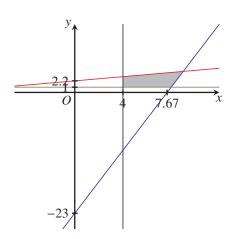
Sketch the graph using the intercepts.

The value of y - 4x + 20 is larger when x is small and y is large, i.e., top left corners.

The top left corners are (4, 3) and (9, 4).

(x, y)	(4, 3)	(9, 4)
y - 4x + 20	7	-12

Required value = 7



$$\angle BCA = 90^{\circ} \text{ and } \angle CBA = 180^{\circ} - 90^{\circ} - 42^{\circ} = 48^{\circ}$$

 $\angle OBC = \frac{48^{\circ}}{2} = 24^{\circ}$
 $\angle BOC = 180^{\circ} - 90^{\circ} - 24^{\circ} = 66^{\circ}$

x-coordinate of vertex =
$$\frac{-k}{2(1)} = -\frac{k}{2}$$

Midpoint of $PR = \left(-\frac{k}{2}, 0\right)$
Consider the x-coordinate of centroid,

$$-2 = \frac{0(1) + \left(-\frac{k}{2}\right)(2)}{1+2}$$

$$k = 6$$

Required number =
$$C_5^{25} - C_5^{15} - C_5^{10}$$

= 49 875

Solve the system
$$\begin{cases} 2x + y - 5 = 0 \\ x^2 + y^2 - kx + 6y - 10 = 0 \end{cases}$$
 using the calculator program.

Value of k	Number of intersections	Sign of Δ
2	2	+

Required range does not contain 2 and 2 is not a boundary value of the range.

The answer is B.

$$\sin \theta = 5 \tan \theta$$

$$\sin \theta = \frac{5 \sin \theta}{\cos \theta}$$

$$\sin \theta \left(1 - \frac{5}{\cos \theta}\right) = 0$$

$$\sin \theta = 0 \quad \text{or} \quad \cos \theta = 5 \text{ (rejected)}$$

$$\theta = 0^{\circ} \quad \text{or} \quad 180^{\circ}$$

Required probability =
$$\frac{\frac{4}{5} \times \frac{2}{3}}{\frac{4}{5} \times \frac{2}{3} + \frac{1}{5} \times \frac{1}{3}}$$
$$= \frac{8}{9}$$