Solution	Marks
REG-2223-MOCK-SET 5-MATH-CP 1	
Suggested solutions	
1. $\frac{m^8 n^{-7}}{(m^3 n^{-3})^2} = \frac{m^8 n^{-7}}{m^6 n^{-6}}$	1M
$(m^{3}n^{-3})^{2} m^{6}n^{-6}$ m^{8-6}	
$=\frac{m^{8-6}}{n^{-6+7}}$	1M
$=\frac{m^2}{m^2}$	1A
n	
3m+2	
$2. \frac{3m+2}{n} - p = m$	
3m + 2 - np = mn	1M
m(3-n) = np - 2	1M
$m = \frac{np-2}{3-n}$	1A
S-h	
3. (a) $49m^2 - 25n^2 = (7m + 5n)(7m - 5n)$	1A
(b) $49m^2 - 25n^2 - 7m - 5n = (7m + 5n)(7m - 5n) - (7m + 5n)$	1M
= (7m + 5n)(7m - 5n - 1)	1A
4. Let the number of students were given two tickets and three tickets be x and y respectively.	
We have $x = 4y$ and $2x + 3y = 220$.	1A+1A
2(4y) + 3y = 220	1M
y = 20	
Number of students = $80 + 20 = 100$	1A
5. (a) Percentage profit = $\frac{28}{140 - 28} \times 100\%$	1M
= 25%	1A
(b) Marked price = $\frac{140}{1 - 20\%}$	1M
= \$175	1A
6. (a) $\angle POR = 310^{\circ} - 130^{\circ} = 180^{\circ}$	1M
Thus, P , O and R are collinear.	1A
(b) Area = $\frac{(3+8)(4)\sin(310^\circ - 280^\circ)}{2}$	1M
2 = 11	1A
- 11	177

Solution	Marks
7. (a) Least possible weight = $700 - \frac{10}{2} = 695 \text{ g}$	1M+1 <i>A</i>
(b) Least total weight = 695×40	1M
$= 27.8 \mathrm{kg}$	13.6
> 27.75 kg	1M 1A
The claim is disagreed.	I A
8. $\angle DAC = \angle CBD = 25^{\circ}$	1A
$\angle ADC = 90^{\circ}$	1A
$\angle ACD = 180^{\circ} - 90^{\circ} - 25^{\circ} = 65^{\circ}$	1A
$\angle CDE = 128^{\circ} - 65^{\circ} = 63^{\circ}$	1A
9. (a) Let $f(x) = ax + b\sqrt{x}$, where a and b are non-zero constants.	1A
	1M
$\begin{cases} 46 = 4a + 2b \\ 188 = 16a + 4b \end{cases}$	1101
Solving, we have $a = 12$ and $b = -1$.	1A
Thus, $f(x) = 12x - \sqrt{x}$.	
(b) Required change = $[12(9) - \sqrt{9}] - [12(16) - \sqrt{16}]$	1M
= -83	1A
10. (a) $28 = 159 - (130 + a)$	
$a = 1$ $131 + 132 + \cdots + 150$	1A
$145 = \frac{131 + 132 + \ldots + 159}{16}$	1M
b = 1	1A
Interquartile range = $151 - 141 = 10 \mathrm{cm}$	1A
(b) (i) For group B, interquartile range = $168 - 157 = 11 \text{ cm} > 10 \text{ cm}$.	
The distribution of heights of students in group B is more dispersed than that in group A .	1A
(ii) Median of the distribution in group B (162 cm) is higher than the maximum of the distribution	1 3 4
in group A (159 cm). The claim is agreed.	1M 1A
· · · · · · · · · · · · · · · · · · ·	1

Solution	Marks
11. (a) $f(x) = (2x^2 - 1)(x + a) + bx - 9$	1M
$\int f(1) = 0 = (2 - 1)(1 + a) + b - 9$	1M
$\begin{cases} f(1) = 0 = (2-1)(1+a) + b - 9 \\ f(2) = 1 = (8-1)(2+a) + 2b - 9 \end{cases}$	
Solving, we have $a = -4$ and $b = 12$.	1A+1A
(b) $f(x) = (2x^2 - 1)(x - 4) + 12x - 9 = 0$	
$2x^3 - 8x^2 + 11x - 5 = 0$	
$(x-1)(2x^2 - 6x + 5) = 0$	1M
$x = 1 \text{or} 2x^2 - 6x + 5 = 0$	124
For $2x^2 - 6x + 5 = 0$, $\Delta = 6^2 - 4(2)(5) = -4 < 0$. The equation has no real roots. The claim is disagreed.	1M 1A
The claim is disagreed.	
12. (a) $\angle ACE = \angle BCD$ (common \angle)	
$\angle CAE = \angle CBD$ (given)	
$\triangle ACE \sim \triangle BCD$ (AA)	
Marking Scheme	
Case 1 Any correct proof with correct reasons. 2	
Case 2 Any correct proof without reasons. 1	
(b) (i) $\frac{BE+10}{26} = \frac{15}{10}$	1M
26 10 $BE = 29 cm$	1A
(ii) $BD = \sqrt{39^2 - 15^2} = 36 \text{ cm}$	1M
Required area = $\frac{(36)(26-15)}{2}$	
$= 198 \mathrm{cm}^2$	1A
(iii) $AE = \sqrt{26^2 - 10^2} = 24 \text{ cm}$	171
$AB = \sqrt{24^2 + 29^2} = \sqrt{1417} \text{ cm}$	
Let the shortest distance between D and P be h cm.	
$\frac{(\sqrt{1417})(h)}{2} = 198$	1M
$h \approx 10.5 > 10$	
There is no such point <i>P</i> .	1A
- note to no over points.	

)
	Solution	Marks
13.	(a) (0, 7)	1A
	(b) (i) Let $P(x, y)$.	
	$\sqrt{x^2 + (y - 7)^2} = \sqrt{(x - 8)^2 + (y - 1)^2}$	1M
	$x^2 + y^2 - 14y + 49 = x^2 + y^2 - 16x - 2y + 65$	
	4x - 3y - 4 = 0	1A
	The equation of locus of P is $4x - 3y - 4 = 0$.	
	(ii) Let the midpoint of AE be F . Then $F(4, 4)$.	
	$AF = \sqrt{4^2 + 3^2} = 5$ and radius of $C = \sqrt{7^2 - 40} = 3 < 5$.	1M
	Thus, F lies outside the circle and C does not have any intersection with Γ .	1A
	(c) Required ratio = $AH : AE$	
	$=3:2\times5$	
	= 3:10	1A
14.	(a) Volume of prism = $(798)(20) = 15960 \text{ cm}^3$	1A
	Volume ratio of two pyramids = $4^{\frac{3}{2}}$: $25^{\frac{3}{2}}$ = 8 : 125	1M
	Volume of smaller pyramid = $15960 \times \frac{8}{8+125}$	
	$= 960 \mathrm{cm}^3$	1A
	(b) Let the height of the smaller pyramid be $h \text{ cm}$.	
	$\frac{1}{3}(24)^2(h) = 960$	1M
	h = 5	
	Total surface area of smaller pyramid = $24^2 + 4 \times \frac{24 \left[\sqrt{5^2 + \left(\frac{24}{2}\right)^2}\right]}{2}$	1M
	$= 1200 \mathrm{cm}^2$	
	Required area = $1200 \times \frac{25}{4}$	1M
	$= 7500 \mathrm{cm}^2$	1A
15.	(a) Let the mean be μ .	
15.	· · · · · · · · · · · · · · · · · · ·	43.5
	$\frac{71-\mu}{6}=1.5$	1M
	$\mu = 62$	1A
	(b) Score of David = $62 - 2.5(6) = 47$	1M
	Range of scores $\geq 71 - 47 = 24 > 23$	
	The claim is disagreed.	1A
		1

Solution	Marks
16. (a) Required probability = $\frac{C_5^{10}}{C_5^{16}}$ = $\frac{3}{52}$	1M
$=\frac{3}{52}$	1A
(b) Required probability = $1 - \frac{C_5^{10} + C_4^{10}C_1^6}{C_5^{16}}$	1M
$=\frac{17}{26}$	1A
17 Slope = -1	
17. Slope = $\frac{-1}{3}$ $\log_2 y = -\frac{1}{3}\log_2 x + 1$	1M
$y = 2^{-\frac{1}{3}\log_2 x + 1}$	
$y = 2x^{-\frac{1}{3}}$ Thus, $a = 2$ and $b = -\frac{1}{3}$.	
Thus, $a = 2$ and $b = -\frac{1}{3}$.	1A+1A
18. (a) Let the time required be n months.	
$250000[1+(95\%)+(95\%)^2+\ldots+(95\%)^{n-1}]>2000000$	
$\frac{1 - 0.95^n}{1 - 0.95} > 8$	1M
$1 - 0.95$ $0.95^n < 0.6$	
$n\log 0.95 < \log 0.6$	1M
n > 9.96	
At least 10 months are required.	1A
(b) Number of barrels that the oil well can produce	
$< \frac{250000}{1-0.95}$	1M
1 - 0.95 = 5 000 000	
The claim is agreed.	1A
and diamin to agreed.	

C. L. d	M. L.
Solution	Marks
19. (a) $x^2 - 4x + 2 = kx - 3k$	1M
$x^2 + (-4 - k)x + (3k + 2) = 0$	
$\Delta = (-4 - k)^2 - 4(1)(3k + 2)$	1M
$=k^2-4k+8$	
$=(k-2)^2+4$	
> 0	
Thus, L and P intersect at two distinct points.	1
(b) (i) α and β are distinct roots of the equation x^2	+ (-4 - k)x + (3k + 2) = 0.
$(\alpha - 4)(\beta - 4) = \alpha\beta - 4(\alpha + \beta) + 16$	
= (3k+2) - 4(4+k) + 16	1M
= -k + 2	1A
(ii) $(\alpha - 4)(\beta - 4) < 0$	1M
-k + 2 < 0	
<i>k</i> > 2	
y-coordinate of midpoint of $AB = \frac{[k\alpha - 3k]}{[k\alpha - 3k]}$	$\frac{k! + [k\beta - 3k]}{2}$ 1M
$=\frac{k(4+k)}{2}$	$\frac{2}{-6k}$
2	
$=\frac{k(k-2)}{2}$	
> 0	(for $k > 2$)
Thus, it is not possible.	1A

C. L. C.	M. J.
Solution	Marks
20. (a) $AD = \frac{\sqrt{30^2 + 40^2}}{2} = 25 \text{ cm}$ $\angle BAC = \cos^{-1} \frac{30}{50} = \cos^{-1} \frac{3}{5}$	
$BD^2 = 25^2 + 30^2 - 2(25)(30)\cos \angle BAC$	1M
$BD = 25 \mathrm{cm}$	1A
$\angle ABD = \angle BAD = \cos^{-1}\frac{3}{5}$	
$AF = 30 \sin \angle ABD = 24 \text{ cm}$	1A
$\cos \angle BAF = \frac{24}{30} = \frac{4}{5}$ $FE = \frac{30}{\cos \angle BAF} - 24 = 13.5 \text{ cm}$	
$FE = \frac{30}{\cos AAE} - 24 = 13.5 \text{ cm}$	1A
(b) (i) Required angle is $\angle AFE$.	
$\cos \angle AFE = \frac{13.5}{24}$	1M
$\angle AFE \approx 55.8^{\circ}$	1A
(ii) Since $AF \perp BD$ and $FE \perp BD$,	
the claim is agreed.	1A
(iii) Area of $\triangle BCD = \frac{\text{area of } \triangle ABC}{2}$	
$=\frac{(30)(40)}{2\times 2}$	
$=300\mathrm{cm}^2$	
Required volume = $\frac{1}{3}(300)(24 \sin \angle AFE)$	1M
$\approx 1984 \mathrm{cm}^3$	1A
(iv) Area of $\triangle ABD$ is equal to the area of $\triangle BCD$, i.e. 300cm^2 .	
By considering the volume of the tetrahedron,	
$\frac{1}{3}(300)(AB\sin\alpha) = \frac{1}{3}(300)(BC\sin\beta)$	1M
$\frac{\sin\alpha}{\sin\beta} = \frac{40}{30} > 1$	
So, $\sin \alpha > \sin \beta$ and therefore $\alpha > \beta$.	1A