REG-2223-MOCK-SET 2-MATH-CP 2

Suggested solutions

Answers:

1. A	2. B	3. A	4. C	5. B	6. B	7. A	8. A	9. D	10. D
11. B	12. C	13. C	14. A	15. B	16. B	17. A	18. B	19. C	20. D
21. D	22. C	23. C	24. D	25. D	26. D	27. C	28. A	29. D	30. B
31. B	32. D	33. A	34. B	35. D	36. C	37. D	38. C	39. A	40. A
41. A	42. C	43. C	44. B	45. D					

Suggested Solutions:

1. A
$$\left(\frac{1}{4^{153}}\right) 8^{101} = 2^{-2 \times 153} \times 2^{101 \times 3} = 2^{-3} = \frac{1}{8}$$

2. B

Coefficient of
$$q^3 = (-1)(1) = -1$$

Coefficient of $p^2q = (1)(1) + (-1)(1) = 0$

Only option B satisfies these.

3. A
$$\frac{c}{a-1} - \frac{ab}{1-a} = 3$$

$$c + ab = 3a - 3$$

$$a(b-3) = -3 - c$$

$$a = \frac{3+c}{3-b}$$

4. **C**

Compare coefficients of
$$x$$
 and constant term,
 $-a + 5a = 9 - 1$ and $5 - 5a^2 = -9 - b$
 $4a = 8$ $b = 6$
 $a = 2$

5. B
$$-f(2) + f(-2) = -(2+4-4) + (2-4-4)$$

$$= -8$$

6. B

$$y = (qx - p)(x + 1) + 3 = q\left(x - \frac{p}{q}\right)(x + 1) + 3$$

I. \checkmark . Coefficient of $x^2 = q > 0$ since the graph open upwards.

II.
$$\checkmark$$
. y-intercept = $-p + 3 < 0 \implies p > 3$

III. **X**. When
$$x = -1$$
, $y = 0 + 3 = 3 \neq 0$.

7. A

The inequalities become x > 6 or x > 2.

Thus, x > 2.

8. A

$$p(-k) = -k^3 + k^3 - 4k - 16 = 0$$

$$k = -4$$

Remainder =
$$(-2)^3 - 4(-2)^2 + 4(-2) - 16$$

= -48

9. D

Amount =
$$94\,000 \left(1 + \frac{4\%}{12}\right)^{3 \times 12}$$

 $\approx \$105\,964$

10. D

Let
$$\begin{cases} 3b - 4c = 1 \\ 4b - 3c = 2 \end{cases}$$
. Then $b = \frac{5}{7}$ and $c = \frac{2}{7}$.

We have
$$a = c \times \frac{2}{1} = \frac{4}{7}$$
.

$$(a+b): (b+c) = \frac{9}{7}: \frac{7}{7} = 9:7$$

11. B

Let $z = \frac{kx^3}{\sqrt{y}}$, where k is a non-zero constant.

Then
$$k = \frac{\sqrt{y}z}{x^3}$$
.

So,
$$\frac{yz^2}{x^6} = k^2$$
 is a constant.

$$n < \frac{2.5 \times 1000}{39.5}$$

The greatest possible value of n is 63.

13. **C**

The numbers are formed by +6, +10, +14, ...

The sequence is 1, 7, 17, 31, 49, 71, 97.

Required number is 97.

$$34\pi = \pi(r) \left(\frac{17r}{8}\right)$$

$$r = 4$$

$$r = 4$$

Volume = $\frac{1}{3}\pi(4)^2\sqrt{8.5^2 - 4^2}$
= $40\pi \text{ cm}^3$

$$\sin \angle ODC = \frac{OC}{OD}$$
$$= \frac{1}{2}$$

$$\angle ODC = 30^{\circ}$$

$$\angle DFE = 75^{\circ} - 30^{\circ} = 45^{\circ}$$
 and $\angle CFB = \angle DFE = 45^{\circ}$

$$\angle CBF = 180^{\circ} - 90^{\circ} - 45^{\circ} = 45^{\circ}$$
 and $\angle OAB = \angle OBA = 45^{\circ}$

$$\angle DOA = 75^{\circ} - 45^{\circ} = 30^{\circ}$$

 $\angle DOA = 75^{\circ} - 45^{\circ} = 30^{\circ}$ Area of sector = $\pi (12)^{2} \times \frac{30^{\circ}}{360^{\circ}} = 12\pi \text{ cm}^{2}$

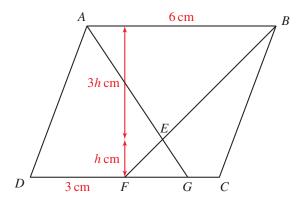
Let CG = 1 cm. Then FG = 2 cm and DF = 3 cm and AB = 6 cm.

$$\triangle EFG \sim \triangle EBA \text{ (ratio 1 : 3)}$$

$$1265 = \frac{(3)(4h)}{2} - \frac{(2)(h)}{2}$$

$$h = 253$$
Area of $\triangle EBA = \frac{(3 \times 253)(6)}{2}$

$$= 2277 \text{ cm}^2$$



17. **A**

Let
$$\angle EAD = x$$
.
 $\angle ADB = \angle ABD = \frac{x}{2}$ and $\angle CDB = \angle ABD = \frac{x}{2}$.
 $\angle DCB = 4\angle BDC = 2x$
 $2x + 2x + \frac{x}{2} = 180^{\circ}$
 $x = 40^{\circ}$

$$\Delta ADE \sim \Delta ACF \quad (AA)$$

$$\frac{AD}{AC} = \frac{AE}{AF} \implies AD = 10 \text{ cm}$$

$$DE = \sqrt{10^2 - 6^2} = 8 \text{ cm and } CF = 8 \times \frac{2}{1} = 16 \text{ cm}$$

$$BC = \sqrt{16^2 + 12^2} = 20 \text{ cm}$$

$$BE = \sqrt{20^2 - 16^2} = 12 \text{ cm} \text{ and } DE = \sqrt{13^2 - 12^2} = 5 \text{ cm}$$

Perimeter = 5 + 13 + (5 + 16) + 20 = 58 cm

$$\angle CGD = \frac{90^{\circ}}{2} = 45^{\circ} \text{ and } \angle EDG = \angle CGD = 45^{\circ}$$
 $CD = DG = DE \text{ and } \angle DEC = \angle DCE = \frac{180^{\circ} - 90^{\circ} - 45^{\circ}}{2} = 22.5^{\circ}$
 $\angle ENG = 22.5^{\circ} + 45^{\circ} = 67.5^{\circ} \text{ and } \angle EMG = \angle ENG = 67.5^{\circ}$

21. D

Let
$$AD = 1$$
.
 $\angle AFD = \alpha$, $AF = \frac{1}{\sin \alpha}$ and $DF = \frac{1}{\tan \alpha}$
 $CF = 1 - \frac{1}{\tan \alpha}$ and $EF = \frac{CF}{\sin(180^\circ - \beta)} = \frac{1 - \frac{1}{\tan \alpha}}{\sin \beta}$
 $\frac{AF}{EF} = \frac{1}{\sin \alpha} \div \frac{1 - \frac{1}{\tan \alpha}}{\sin \beta}$
 $= \frac{\sin \beta}{\sin \alpha - \cos \alpha}$

22. **C**

$$\angle CAD = \angle BAC \times \frac{16}{24} = 42^{\circ}$$

 $\angle ACB = 180^{\circ} - 90^{\circ} - 63^{\circ} = 27^{\circ} \text{ and } \angle ADE = \angle ACB = 27^{\circ}$
 $\angle AED = 180^{\circ} - 27^{\circ} - 42^{\circ} = 111^{\circ}$

23. C

There are 6 axes of reflectional symmetry.

24. D

I.
$$\checkmark$$
. Slope = $-\frac{a}{5} < 0 \implies a > 0$

II.
$$\checkmark$$
. y-intercept = $\frac{b}{5} < -1 \implies b < -5$

III.
$$\checkmark$$
. x-intercept = $\frac{b}{a} > -2$ and $a > 0 \implies b > -2a$

25. D

AB is fixed, so the perpendicular distance from P to L is also a constant.

Thus, locus of P is a pair of straight lines, parallel to L and maintain a fixed distance from L.

26. D

The equation is in the form 2x - 3y + C = 0, where C is a constant.

Put (5, 1) into the equation, we have C = -7.

27. **C**

$$C_2$$
: $x^2 + y^2 + 6x - 8y + \frac{33}{2} = 0$
 G_1 (4, 3) and G_2 (-3, 4).

I.
$$\checkmark$$
. Slope of $G_1O \times$ slope of $G_2O = \frac{3}{4} \times \frac{4}{-3} = -1$

II. **X**. Radius of
$$C_1 = \sqrt{4^2 + 3^2 - 20} = \sqrt{5}$$
 and radius of $C_2 = \sqrt{3^2 + 4^2 \frac{33}{2}} = \sqrt{8.5} > \sqrt{5}$ So, area of C_1 is smaller than the area of C_2 .

III.
$$\checkmark$$
. $OG_1 = OG_2 = \sqrt{3^2 + 4^2} = 5$

28. A

Required probability =
$$\frac{3+2+2+1}{8\times7}$$

= $\frac{1}{7}$

29. D

In the cumulative frequency curve, steeper \Rightarrow more data in the corresponding class. So, the data is more concentrated in the lower part.

Minimum, lower quartile, median and upper quartile will be closed to each other.

30. B

Mode =
$$60 \implies \text{at least three of } a, b, c, d \text{ are } 60$$

Let
$$a = b = c = 60$$
.
 $70 = \frac{60 + 60 + 60 + d + \dots + 81}{12}$

$$d = 76$$

$$Median = 76$$

31. B

From
$$y = f(x)$$
,
reflect about x-axis $\rightarrow y = -f(x)$
translate leftwards by 2 units $\rightarrow y = -f(x+2)$

32. D

$$11010_2 = 26$$
 and the '1' has a place value 2^9 . So, the answer is D.

For the point
$$\left(\frac{1}{3}, 0\right)$$
,

$$\log_8 x = \frac{1}{3}$$
 and $\log_4 y = 0$
 $x = 8^{\frac{1}{3}} = 2$ $y = 1$

Only option A satisfies this.

Take log on the 'positive' part.

A.
$$589 \log 111 \approx 1205$$

B.
$$577 \log 123 \approx 1206$$

C.
$$565 \log 135 \approx 1204$$

D.
$$553 \log 147 \approx 1199$$

The 'positive' part of the number in B is the greatest. So, it gives the least value when it is negative.

Take
$$m = 1$$
, $i^7 + \frac{i^5 - 4}{m - i} = -\frac{5}{2} - \frac{5}{2}i$.
Only option D gives $-\frac{5}{2}$ when $m = 1$.

36. **C**

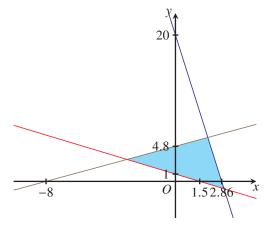
Line	x-intercept	y-intercept		
7x + y = 20	$\frac{20}{7}$	20		
2x + 3y = 3	$\frac{3}{2}$	1		
5y - 3x = 24	-8	$\frac{24}{5}$		

Sketch the graph and shaded region T.

Greatest value of $4y-3x-5 \implies \text{top left corner}$

(x, y)	(-3, 3)	(2, 6)		
4y - 3x - 5	16	13		

Greatest value = 16



37. D

Let the first term and common ratio be a and r respectively.

$$\frac{ar^7}{ar^2} = \frac{6}{192}$$
$$r^5 = \frac{1}{32}$$
$$r = \frac{1}{2}$$

II.
$$\checkmark$$
. $a = \frac{192}{r^2} = 768$.

$$768 \left(\frac{1}{2}\right)^{n-1} > 10^{-2}$$

$$(n-1)\log\frac{1}{2} > \log\frac{1}{76\,800}$$

$$n < 17.2$$

17 terms are greater than 10^{-2} .

III.
$$\checkmark$$
. Sum = $\frac{768\left(1-\left(\frac{1}{2}\right)^{13}\right)}{1-\frac{1}{2}} \approx 1535.8$
> 1535

$$4\cos^{2}\theta - 7\sin\theta - 7 = 0$$
$$4(1 - \sin^{2}\theta) - 7\sin\theta - 7 = 0$$
$$-4\sin^{2}\theta - 7\sin\theta - 3 = 0$$

$$\sin \theta = -1$$
 or $-\frac{3}{4}$

 $\sin \theta = -1$ has one root and $\sin \theta = -\frac{3}{4}$ has two roots.

$$CM = 30 \times \frac{7}{3+7} = 21 \text{ cm} \text{ and } MH = 30 - 21 = 9 \text{ cm}$$

 $MA = \sqrt{12^2 + 16^2 + 21^2} = 29 \text{ cm} \text{ and } MG = \sqrt{12^2 + 9^2} = 15 \text{ cm}$
 $AG = \sqrt{30^2 + 16^2} = 34 \text{ cm}$
 $AG^2 = AM^2 + MG^2 - 2(AM)(MG) \cos \theta$
 $\cos \theta = \frac{-3}{29}$

40. A

$$\angle AGE = 2 \times 66^{\circ} = 132^{\circ}$$

 $\angle CEA = 132^{\circ} \times \frac{6}{5+6} = 72^{\circ}$
 $\angle CAT = \angle CEA = 72^{\circ} \text{ and } \angle ATC = 180^{\circ} - 2 \times 72^{\circ} = 36^{\circ}$

- 41. A
 - I. \checkmark . G lies inside $\triangle OAB$, which is in the second quadrant. The x- and y-coordinates are not equal (one positive and one negative).
 - II. \checkmark . Let the radius of inscribed circle be r. Then the coordinates of G are (-r, r).

$$4r + (-r) = 3kb$$
$$r = kb$$

Using tangent properties, OB is divided into two segments with lengths b-r and r.

OA is divided into two segments with lengths 10 - r and r.

$$(10-r) + (b-r) = \sqrt{10^2 + b^2}$$

$$[10+b(1-2k)]^2 = b^2 + 100$$

$$100+20b(1-2k) + b^2(1-2k)^2 = b^2 + 100$$

$$b^2(4k^2 - 4k) + 20b(1-2k) = 0$$

$$b = -\frac{20(1-2k)}{4k^2 - 4k}$$

$$= \frac{5(1-2k)}{k(1-k)}$$

Required distance = $r = kb = \frac{5(1-2k)}{1-k}$

III. **X**. When
$$k = \frac{1}{6}$$
, $r = \frac{5(1-2k)}{1-k} = 4$.

Equation of inscribed circle is $(x + 4)^2 + (y - 4)^2 = 4^2$.

$$(x+4)^2 + (5-3x-4)^2 = 16$$
$$10x^2 + 2x + 1 = 0$$

$$\Delta = 2^2 - 4(10)(1) = -36 < 0.$$

The straight line 3x + y = 5 does not cut the inscribed circle of $\triangle OAB$ and hence is not a tangent.

42. **C**

Required number = $C_3^{10}3!9! = 261\ 273\ 600$

43. **C**

Required probability =
$$1 - \left(1 - \frac{2}{8}\right) \left(1 - \frac{3}{8}\right) \left(1 - \frac{4}{8}\right)$$

= $\frac{49}{64}$

44. B

Let the standard deviation of the test scores be σ .

$$\frac{76-64}{\sigma} = 1.5$$

Standard score of Anson =
$$\frac{54 - 64}{8} = -1.25$$

45. D

From new to old,

multiply by 4 and then subtract 3 from the resulting number.

Thus, mean of original set = 4m - 3 and variance = 16v.