REG-AOT-2223-ASM-SET 2-MATH

Suggested solutions

Multiple Choice Questions

$$BD = \sqrt{12^2 + 5^2} = 13 \text{ cm}$$

$$BH = \sqrt{5^2 + 8^2} = \sqrt{89} \text{ cm}$$

$$\tan \angle FBG = \frac{12}{8} \quad \text{and} \quad \tan \angle DEB = \frac{13}{8}$$

$$\angle FBG \approx 56.3^{\circ} \qquad \angle DEB \approx 58.4^{\circ}$$

$$\tan \angle EBH = \frac{12}{\sqrt{89}} \quad \text{and} \quad \tan \angle ACB = \frac{12}{5}$$

$$\angle EBH \approx 51.8^{\circ} \qquad \angle ACB \approx 67.4^{\circ}$$

2. B

Let
$$VA = 2 \text{ cm}$$
.

Note that VA = VC and $\angle AVC = 60^{\circ}$. $\triangle VAC$ is an equilateral triangle.

$$AB = AC \cos 45^{\circ}$$

$$= \sqrt{2} \text{ cm}$$

$$AB^{2} = VA^{2} + VB^{2} - 2(VA)(VB) \cos \angle AVB$$

$$\angle AVB \approx 41.4^{\circ}$$

$$AC = AD \cos \angle DAC$$
$$= x \cos \beta$$
$$BC = AC \sin \angle CAB$$
$$= x \sin \alpha \cos \beta$$

$$BC = AC \sin 60^{\circ}$$
$$= 4\sqrt{3} \text{ m}$$
$$\tan \theta = \frac{6}{4\sqrt{3}}$$
$$\theta \approx 41^{\circ}$$

$$ME = MF = \frac{1}{2}\sqrt{4^2 + 3^2 + 12^2}$$

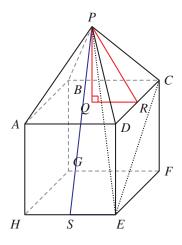
= 6.5 cm
 $4^2 = ME^2 + MF^2 - 2(ME)(MF)\cos\theta$
 $\theta \approx 36^\circ$

6. D

Let the lengths of edges be 1. Let R be the midpoint of CD and Q be the midpoint of AC such that $PQ \perp QR$. Let S be the midpoint of HE such that $PS \perp HE$.

$$QR = 0.5$$
 and $PR = \sqrt{1^2 - 0.5^2} = \sqrt{0.75}$
So, $PQ = \sqrt{(\sqrt{0.75})^2 - 0.5^2} = \sqrt{0.5}$.
 $PS = \sqrt{(\sqrt{0.5} + 1)^2 + 0.5^2} \approx 1.78$
 $PE = \sqrt{PS^2 + 0.5^2} \approx 1.85$ $CE = \sqrt{1^2 + 1^2} = \sqrt{2}$
In $\triangle PCE$,

$$1^{2} = PE^{2} + CE^{2} - 2(PE)(CE)\cos \angle PEC$$
$$\angle PEC \approx 32.4^{\circ}$$



7. **C**

Let the length of each side be 2.

$$AH = \sqrt{1^2 + 1^2} = \sqrt{2} \text{ and } VH = \sqrt{2^2 - (\sqrt{2})^2} = \sqrt{2}$$
$$\sin \angle VAH = \frac{\sqrt{2}}{2} = \frac{1}{\sqrt{2}}$$

Since *M* and *N* are midpoints of *OB* and *OC* respectively, $MN = \frac{BC}{2} = \sqrt{2}$ cm In $\triangle AOB$, $\angle AOB = 45^{\circ}$ and $AM \perp OB$ by symmetry.

$$AM = 2\sin 45^\circ = \sqrt{2} \text{ cm}$$

 $AN = AM = \sqrt{2}$ cm and $\triangle AMN$ is equilateral.

Area of
$$\triangle AMN = \frac{\sqrt{3}}{2} \text{ cm}^2$$

$$\angle ABC = \tan^{-1} \frac{3}{4} \text{ and } CD = 4 \sin \angle ABC = 2.4 \text{ m}$$

 $\tan \theta = \frac{5}{2.4} = \frac{25}{12}$

10. E

Consider the cross section in the shape of right-angled triangle.

Hypotenuse = $1 \cos \alpha = \cos \alpha$ m, length of the other two sides are $\cos \alpha \sin \beta$ m and $\cos \alpha \cos \beta$ m.

Volume =
$$\frac{(\cos \alpha \cos \beta)(\cos \alpha \sin \beta)}{2} \times 1 \sin \alpha$$
$$= \frac{1}{2} \sin \alpha \cos^2 \alpha \sin \beta \cos \beta \, \text{m}^3$$

11. A

I. \checkmark . VA is vertical and AB is horizontal.

II. \not X. Note that $\angle VAM = 90^{\circ}$ and so $\angle VMA = 180^{\circ} - 90^{\circ} - \angle AVM < 90^{\circ}$.

III. X.

12. A

I. \checkmark . AF is perpendicular to the plane ABCD, so $\angle CAF = 90^{\circ}$.

II. \checkmark . GH is perpendicular to the plane CDEH, so $\angle DHG = 90^{\circ}$.

III. X. Consider the case when all sides of the cuboid are equal (cube), then AG = GC = AC and $\angle AGC = 60^{\circ}$.

Thus, $\angle AGC$ is not always 90°.

13. **C**

A.
$$\tan \angle ACE = \frac{AE}{CE}$$

B.
$$\tan \angle AQE = \frac{AE}{EQ}$$

C.
$$\tan \angle ADE = \frac{AE}{DE}$$

D.
$$\tan \angle PCR = \frac{PR}{CR} = \frac{AE}{CR}$$

Since DE < EQ = RC < CE, we have $\tan \angle ADE$ being the greatest among all.

 $\angle ADE$ is therefore the greatest angle among all.

The answer is C.

14. D

Let N be the midpoint of CD and Y be the midpoint of AC. Consider the required angle between line and plane.

A.
$$\angle GAB = \tan^{-1} \frac{10}{AB}$$

B.
$$\angle CAH = \tan^{-1} \frac{10}{AC}$$

D. $\angle XAY = \tan^{-1} \frac{10}{AY}$

C.
$$\angle MAN = \tan^{-1} \frac{10}{AN}$$

D.
$$\angle XAY = \tan^{-1} \frac{10}{AY}$$

Since AY is the shortest among AB, AC, AN and AY, $\angle XAY$ is the greatest angle.

15. A

Required angle is $\angle AHD$.

$$DH = \sqrt{6^2 + 8^2} = 10 \text{ cm}$$

$$\tan \angle AHD = \frac{10}{10}$$

$$\angle AHD = 45^{\circ}$$

16. D

Let Q be a point on DE such that $NQ \perp DE$.

Then
$$\theta = \angle NPQ$$
.

Then
$$\theta = 2NTQ$$
.
 $PQ = \frac{3}{2} = 1.5 \text{ cm}$
 $\tan \theta = \frac{3}{1.5}$

$$\tan \theta = \frac{3}{1.5}$$

$$=2$$

17. **A**

Required angle is $\angle BDF$.

$$BD = \sqrt{4^2 + 8^2} = \sqrt{80} \text{ cm}$$

$$BF = \sqrt{4^2 - 3^2} = \sqrt{7} \text{ cm}$$

$$\sin \angle BDF = \frac{\sqrt{7}}{\sqrt{80}}$$

$$\angle BDF \approx 17^{\circ}$$

Required angle is $\angle DBE$.

Let
$$AD = CE = DE = 1$$
 cm.

$$BE = \sqrt{1^2 + 1^2} = \sqrt{2}$$
 cm

$$BE = \sqrt{1^2 + 1^2} = \sqrt{2} \text{ cm}$$
$$\tan \angle DBE = \frac{1}{\sqrt{2}}$$

$$\angle DBE \approx 35^{\circ}$$

19. B

Since VA = VB, we have $\angle VAB = \frac{180^{\circ} - 60^{\circ}}{2} = 60^{\circ}$ and so all lateral faces are equilateral triangles.

Required angle is $\angle VAM$, where M is the projection of V on ABCD.

Let
$$AB = 2$$
. Then $VA = 2$ and $AM = \frac{1}{2}\sqrt{2^2 + 2^2} = \sqrt{2}$

Required angle =
$$\angle VAM = \cos^{-1} \frac{\sqrt{2}}{2} = 45^{\circ}$$

We have $\angle VAC = 60^{\circ}$.

Since VA = VC, we have $\angle VCA = \angle VAC = 60^{\circ}$ and $\triangle VAC$ is equilateral.

$$AC = \sqrt{1^2 + 1^2} = \sqrt{2} \,\mathrm{m}$$

$$VB = VA = VC = AC = \sqrt{2} \,\mathrm{m}$$

In $\triangle VAB$,

$$1^2 = VA^2 + VB^2 - 2(VA)(VB)\cos \angle AVB$$

$$\angle AVB \approx 41^{\circ}$$

21. A

$$BD = \sqrt{25^2 - 15^2} = 20 \text{ m}$$

 $29^2 = 21^2 + 20^2 - 2(21)(20) \cos \angle BDC$

$$\angle BDC = 90^{\circ}$$

Since $BD \perp AD$ and $BD \perp CD$, $BD \perp \triangle ACD$.

Thus, the projection of B on the plane ACD is D, and the required angle is $\angle BAD$.

$$\angle BAD = \tan^{-1} \frac{20}{15} \approx 53^{\circ}$$

22. A

Let K be a point on ME such that $FK \perp ME$. [In fact, K is at the position of point M.]

Since $AF \perp EM$, we also have $AK \perp ME$. The angle required is therefore $\angle AKF$.

Since MH = EH = 12 cm, $\angle EMH = 45^{\circ}$ and so $\angle FEM = 45^{\circ}$

$$FK = FE \sin \angle FEM = 12\sqrt{2} \text{ cm}$$

Required angle = $\tan^{-1} \frac{AF}{FK} = \frac{10}{12\sqrt{2}} \approx 31^{\circ}$

23. C

Let the length of cube be 2. M and N be midpoints of BD and PQ respectively.

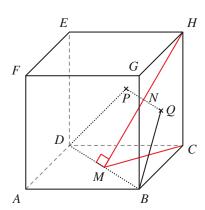
Note that since D, P, H are collinear and B, Q, H are collinear, we have M, N and H are collinear.

Note that $MH \perp BD$ and $CM \perp BD$.

The angle required is $\angle CMH$.

$$CM = \frac{1}{2}\sqrt{2^2 + 2^2} = \sqrt{2}.$$

$$\angle CMH = \tan^{-1} \frac{2}{\sqrt{2}} \approx 55^{\circ}.$$



24. B

Let
$$BC = 1$$
.
 $AE = BF = 1 \sin 60^{\circ} = \frac{\sqrt{3}}{2}$
 $AC = \frac{AE}{\sin 30^{\circ}} = \sqrt{3}$
 $\cos \angle ACB = \frac{BC}{AC} = \frac{1}{\sqrt{3}}$

25. B

Let M and N be midpoints of BC and AD respectively.

Required angle is $\angle MVN$.

$$MV = NV = \sqrt{8^2 - \left(\frac{4}{2}\right)^2} = \sqrt{60} \text{ cm}$$

$$6^2 = MV^2 + NV^2 - 2(MV)(NV) \cos \angle MVN$$

$$\angle MVN \approx 46^\circ$$

26. **C**

Let K be a point on VB such that $AK \perp VB$. We have $CK \perp VB$ also.

Required angle is $\angle AKC$.

$$AC = \sqrt{12^2 + 12^2} = 12\sqrt{2} \text{ cm}$$

 $VA = VB = VC = \sqrt{8^2 + \left(\frac{12\sqrt{2}}{2}\right)^2} = \sqrt{136} \text{ cm}$

In $\triangle VAB$,

$$\cos \angle ABV = \frac{\left(\frac{12}{2}\right)}{VB}$$
$$\angle ABV \approx 59.0^{\circ}$$

$$AK = CK = 12 \sin \angle ABV \approx 10.3 \text{ cm}$$

In $\triangle AKC$,

$$AC^{2} = AK^{2} + CK^{2} - 2(AK)(CK)\cos \angle AKC$$

$$\angle AKC \approx 111^{\circ}$$

27. **C**

$$15^2 = 9^2 + 12^2 \quad \Rightarrow \quad \angle BDC = 90^\circ.$$

Since
$$\triangle ABD$$
 is vertical and CD is horizontal, $AD \perp CD$.
Therefore, $\theta = \angle ADB = \tan^{-1} \frac{12}{9}$ and so $\sin \theta = \frac{4}{5}$.

28. D

Let D be a point on BC such that $PD \perp BC$.

Required angle is $\angle ADP$.

$$\frac{BC = \sqrt{4^2 + 3^2} = 5 \text{ m}}{\frac{(PD)(BC)}{2}} = \frac{(PB)(PC)}{2}$$

$$PD = 2.4 \,\mathrm{m}$$

$$\tan \angle ADP = \frac{5}{2.4}$$
$$= \frac{25}{12}$$

29. D

Refer to the figure. Let E be the midpoint of BC and length of each side be x cm.

In
$$\triangle AED$$
, $AE = DE = x \sin 60^\circ = \frac{\sqrt{3}x}{2}$ cm

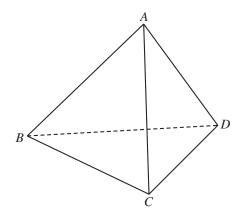
$$x^2 = AE^2 + DE^2 - 2(AE)(DE)\cos \angle AED$$

$$\angle AED = \cos^{-1}\frac{1}{3}$$

 $\angle AED = \cos^{-1} \frac{1}{3}$ Let *X* be the projection of *A* on the plane *BCD*. Then X lies on DE and $AX \perp BD$.

In $\triangle AEX$,

$$AE \sin \angle AED = 4$$
$$x = 2\sqrt{6}$$



30. B

Refer to the figure. Let E be the midpoint of BC and length of each side be x cm.

In
$$\triangle AED$$
, $AE = DE = x \sin 60^\circ = \frac{\sqrt{3}x}{2}$ cm

$$x^2 = AE^2 + DE^2 - 2(AE)(DE)\cos \angle AED$$

$$\angle AED = \cos^{-1}\frac{1}{3}$$

Let X be the projection of A on the plane BCD. Then

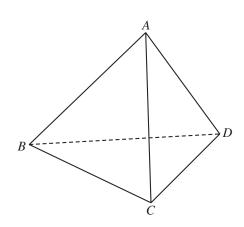
X is the centroid of $\triangle BCD$ and it lies on DE.

In $\triangle AEX$, $\angle AXE = 90^{\circ}$ and

$$AE \sin \angle AED = 2$$

$$x = \sqrt{6}$$

Volume =
$$\frac{1}{2}(\sqrt{6})^2 \sin 60^\circ(2) \times \frac{1}{3} = \sqrt{3} \text{ cm}^3$$



Conventional Questions

31. (a) In $\triangle VAB$, VB = VA = 24 cm, and

$$24^2 = 12^2 + 24^2 - 2(12)(24)\cos \angle VBA$$
 1M

$$\angle VBA \approx 75.5^{\circ}$$
 1A

In
$$\triangle ABD$$
, $AD = 12 \sin \angle VBA \approx 11.6 \text{ cm}$

(b) The angle between the two planes is $\angle ADC$.

In
$$\triangle ACD$$
, $CD = AD$, and

$$12^2 = AD^2 + CD^2 - 2(AD)(CD)\cos \angle ADC$$
 1M

$$\angle ADC \approx 62.2^{\circ}$$

Required angle is 62.2°.

32. (a) In $\triangle VBC$,

$$VD = 1.2 \sin 60^{\circ}$$
$$= \frac{3\sqrt{3}}{5} \text{ m}$$

In $\triangle ABC$,

$$AD = 1.2 \sin 60^{\circ}$$
$$= \frac{3\sqrt{3}}{5} \text{ m}$$

In $\triangle VAD$,

$$1.2^{2} = \left(\frac{3\sqrt{3}}{5}\right)^{2} + \left(\frac{3\sqrt{3}}{5}\right)^{2} - 2\left(\frac{3\sqrt{3}}{5}\right)^{2} \cos \angle VDA$$

 $\angle VDA \approx 70.52877937^{\circ}$

In $\triangle VGD$,

$$VG = \frac{3\sqrt{3}}{5}\sin\angle VDA$$

$$\approx 0.980 \,\mathrm{m}$$
1M

(b) Required angle is also equal to the angle between VBC and ABC, i.e., $\angle VDA$. 1M+1A Required angle is 70.5°. 1A

33. (a)
$$CE = BE = \sqrt{12^2 + 20^2} = 4\sqrt{34} \text{ cm}$$

$$BC^2 = 12^2 + 12^2 - 2(12)(12)\cos 40^\circ$$

 $BC \approx 8.21 \,\mathrm{cm}$

$$BC^2 = BE^2 + CE^2 - 2(CE)(BE)\cos \angle BEC$$
1M

$$\angle BEC \approx 20.3^{\circ}$$

(b) Let M be the midpoint of DF, such that EM is perpendicular to the plane BCDF.

$$ME = 12\cos\frac{40^{\circ}}{2} \approx 11.3 \,\mathrm{cm}$$

Required angle is
$$\angle ECM$$
.

 $ME = 12 \cos \frac{40^{\circ}}{2} \approx 11.3 \text{ cm}$
 $\sin \angle ECM = \frac{ME}{\sqrt{544}}$

1M

$$\angle ECM \approx 28.9^{\circ}$$

(c) Let N be the midpoint of BC. Required angle is $\angle ENA$.

$$AN = ME \approx 11.3 \text{ cm}$$

$$AN = ME \approx 11.3 \text{ cm}$$

 $\tan \angle ENA = \frac{20}{AN}$

$$\angle ENA \approx 60.6^{\circ}$$

34. (a) Since
$$XB \perp BC$$
, we have $XB^2 + BC^2 = XC^2$.

Since $AB \perp BC$, we have $AB^2 + BC^2 = AC^2$.

If $AX \perp XB$, then $AX^2 + XB^2 = AB^2$.

$$AX^2 + XC^2 = AX^2 + (XB^2 + BC^2)$$

$$= AB^2 + BC^2$$

$$= AC^2$$

(b) (i) In $\triangle ABF$,

Hence, $AX \perp XC$.

$$BF^{2} = 1^{2} + (3\sqrt{2})^{2} - 2(1)(3\sqrt{2})\cos 135^{\circ}$$

$$BF = 5 \text{ m}$$
1M

Therefore,

$$1^{2} = 5^{2} + (3\sqrt{2})^{2} - 2(5)(3\sqrt{2})\cos \angle ABF$$
 1M

1

$$\cos \angle ABF = \sqrt{\frac{49}{50}}$$

In
$$\triangle ABX$$
, $XB = AB\cos\angle ABF = 3\sqrt{2} \times \sqrt{\frac{49}{50}} = \frac{21}{5}$ m

Remarks:

The method of using $\angle ABF \approx 8.13^{\circ}$ can only gives an **approximated** value of *XB*. This cannot be used to show $XB = \frac{21}{5}$ m.

(ii) By (a), $AX \perp XB \Rightarrow AX \perp XC$ and $AX \perp XF \Rightarrow AX \perp XE$.

So, the required angle
$$\theta$$
 is $\angle CXE$.

$$CX = \sqrt{\left(\frac{7}{5}\right)^2 + \left(\frac{21}{5}\right)^2} = \frac{7\sqrt{10}}{5} \,\text{m}$$

$$FX = 5 - \frac{21}{5} = \frac{4}{5}$$

$$EX = \sqrt{\left(\frac{7}{5}\right)^2 + \left(\frac{4}{5}\right)^2} = \frac{\sqrt{65}}{5}$$

$$\ln A \subset FX$$

$$5^2 = \left(\frac{7\sqrt{10}}{5}\right)^2 + \left(\frac{\sqrt{65}}{5}\right)^2 - 2\left(\frac{7\sqrt{10}}{5}\right)\left(\frac{\sqrt{65}}{5}\right)\cos\theta$$
 1M

$$\cos \theta = \frac{1}{\sqrt{26}}$$

So,
$$\tan \theta = \frac{\sqrt{26 - 1^2}}{-1} = -5$$
. 1M+1A