

Dexter Wong & His Mathematics Team
Summer Course 2022 – 2023
MATHEMATICS Compulsory Part
S5 – S6 Core Assignment Set 8

Name: _____

Centre: _____

Lesson date: SUN/MON/TUE/WED/THU/FRI/SAT

INSTRUCTIONS

1. Attempt ALL questions in this paper. Write your answers in the spaces provided in this Question-Answer Book.
2. Unless otherwise specified, all workings (except for multiple choice questions) must be clearly shown.
3. Unless otherwise specified, numerical answers should be either exact or correct to 3 significant figures.
4. The diagrams in this paper are not necessarily drawn in scale.

Suggested solution

Distributed in summer course
S5 – S6 Core
Phase 2 – Lesson 4

1. (a) $VB = 5 \tan 40^\circ \approx 4.20 \text{ cm}$ 1M+1A

$$VC = \frac{5}{\cos 40^\circ} \approx 6.53 \text{ cm}$$
 1A

(b) $AB^2 = (5 \tan 40^\circ)^2 + (5 \tan 40^\circ)^2 - 2(5 \tan 40^\circ)(5 \tan 40^\circ) \cos 25^\circ$ 1M

$$AB \approx 1.82 \text{ cm}$$
 1A

(c) Let M be a point on VC such that $AM \perp VC$ and $BM \perp VC$.
The angle required is $\angle AMB$. 1A

$$BM = 5 \sin 40^\circ \approx 3.21 \text{ cm}$$
 1M

Since $\triangle VAM \cong \triangle VBM$, $AM = BM \approx 3.21 \text{ cm}$ 1M

In $\triangle AMB$,

$$AB^2 = (AM)^2 + (BM)^2 - 2(AM)(BM) \cos \angle AMB$$
 1M
$$\angle AMB \approx 32.8^\circ$$
 1A

Required angle is 32.8° .

(d) Let N be the midpoint of AB .
Required angle is $\angle VCN$. 1A

$$CN = \sqrt{5^2 - \left(\frac{AB}{2}\right)^2} \approx 4.92 \text{ cm}$$
 1M
$$VN = VA \cos \frac{25^\circ}{2} \approx 4.10 \text{ cm}$$
 1M

In $\triangle VCN$,

$$VN^2 = CN^2 + VC^2 - 2(CN)(VC) \cos \angle VCN$$
 1M
$$\angle VCN \approx 38.8^\circ$$
 1A

Required angle is 38.8° .

2. (a) The paper card is symmetric about AC .
So, $\angle BAC = 60^\circ$ and $\angle ACB = 180^\circ - 60^\circ - 70^\circ = 50^\circ$. 1A

$$\frac{AC}{\sin 70^\circ} = \frac{10}{\sin 50^\circ}$$
 1M
$$AC \approx 12.3 \text{ cm}$$
 1A
$$BC = \frac{10 \sin 60^\circ}{\sin 50^\circ} \approx 11.3 \text{ cm}$$
 1A

(b) (i) $AE = \sqrt{AB^2 - BE^2}$ and $CE^2 = \sqrt{BC^2 - BE^2}$

$$AC^2 = AE^2 + CE^2$$

$$= BC^2 + AB^2 - 2BE^2$$
 1M
$$BE \approx 6.22 \text{ cm}$$
 1A

(ii) Let $h \text{ cm}$ be the required distance.
 $AE = \sqrt{10^2 - BE^2} \approx 7.83 \text{ cm}$ and $CE = \sqrt{BC^2 - BE^2} \approx 9.4 \text{ cm}$

$$\frac{1}{3} \times \frac{(AE)(DB)}{2} \times CE = \frac{1}{3} \times \frac{(AD)(AC) \sin 60^\circ}{2} \times h$$
 1M+1M
$$h \approx 8.66$$
 1A

Required distance is 8.66 cm .

3. (a) (i) Let $s = \frac{6+7+5}{2} = 9$.

$$\begin{aligned} \text{Area of } \triangle ABC &= \sqrt{9(9-5)(9-6)(9-7)} \\ &= 6\sqrt{6} \end{aligned} \quad \begin{matrix} 1M \\ 1A \end{matrix}$$

$$\text{(ii)} \quad \frac{1}{2}(6)(r) + \frac{1}{2}(7)(r) + \frac{1}{2}(5)(r) = 6\sqrt{6} \quad \begin{matrix} 1M \\ 1A \end{matrix}$$

$$r = \frac{2\sqrt{6}}{3} \quad \begin{matrix} 1 \\ 1 \end{matrix}$$

(b) (i) Let X be the point of contact of AB and the inscribed circle in $\triangle ABC$.

Then $\angle V X O = 60^\circ$. 1A

$$\text{In } \triangle V X O, V O = r \tan 60^\circ = \frac{2\sqrt{6}}{3} \times \sqrt{3} = 2\sqrt{2}$$

$$\begin{aligned} \text{Volume of } VABC &= \frac{1}{3}(6\sqrt{6})(2\sqrt{2}) \\ &= 8\sqrt{3} \end{aligned} \quad \begin{matrix} 1M \\ 1A \end{matrix}$$

(ii) Let Y be the point of contact of BC and the inscribed circle.

Since $\triangle V O X \cong \triangle V O Y$ (SAS)

$$\angle V Y O = \angle V X O = 60^\circ \text{ and } V Y = \frac{r}{\cos 60^\circ} = \frac{4\sqrt{6}}{3}.$$

$$\begin{aligned} \text{Area of } \triangle V B C &= \frac{1}{2}(7) \left(\frac{4\sqrt{6}}{3} \right) \\ &= \frac{14\sqrt{6}}{3} \end{aligned} \quad \begin{matrix} 1M \\ 1A \end{matrix}$$

(iii) Let F be the foot of perpendicular from A to the plane VBC .

Required angle is $\angle A B F$. 1A

By considering the volume of tetrahedron $VABC$,

$$8\sqrt{3} = \frac{1}{3} \left(\frac{14\sqrt{6}}{3} \right) (AF) \quad \begin{matrix} 1M \\ 1M \end{matrix}$$

$$AF = \frac{18\sqrt{2}}{7}$$

In $\triangle A B F$,

$$\sin \angle A B F = \frac{18\sqrt{2}}{7} \div 6 \quad \begin{matrix} 1M \\ 1A \end{matrix}$$

$$\angle A B F \approx 37^\circ$$

4. (a) $PS^2 = 24^2 + 18^2 - 2(24)(18) \cos 50^\circ$ 1M

$PS \approx 18.6$ cm 1A

(b) Let M be the midpoint of QR . The angle required is $\angle SMP$. 1M

$$SM = \sqrt{18^2 - \left(\frac{20}{2}\right)^2} = 4\sqrt{14} \text{ cm} \quad 1M$$

$$PM = \sqrt{24^2 - 10^2} = 2\sqrt{119} \text{ cm}$$

$$PS^2 = SM^2 + PM^2 - 2(SM)(PM) \cos \angle SMP \quad 1M$$

$$\angle SMP \approx 57.0^\circ \quad 1A$$

(c) $\angle PAS = \cos^{-1} \frac{AP^2 + AS^2 - SP^2}{2(AP)(AS)}$

By symmetry of the figure, $\angle PAS$ is the largest when A is at the midpoint of QR such that AP and AS are perpendicular to QR and are shortest.

When A moves from Q to midpoint M , $\angle PAS$ increases from 50° to 57.0° . 1A

When A moves from midpoint M to R , $\angle PAS$ decreases from 57.0° to 50° . 1A

5. (a) Let M be the midpoint of AC .

$$BM = 20 \sin 60^\circ = 10\sqrt{3} \text{ cm}$$

$$BE = BM \sin 60^\circ = 15 \text{ cm} \quad 1A$$

$\angle BEC = 90^\circ$. So, BC is a diameter of the circumcircle of $\triangle BCE$. 1M

$$\text{Thus, } DE = DB = DC = \frac{20}{2} = 10 \text{ cm} \quad 1A$$

(b) $AE = \sqrt{AB^2 - BE^2} \quad 1M$

$$= \sqrt{175} \text{ cm}$$

$$AD = BM = 10\sqrt{3} \text{ cm}$$

$$AE^2 = AD^2 + DE^2 - 2(AD)(DE) \cos \angle ADE \quad 1M$$

$$\angle ADE \approx 49.5^\circ \neq 90^\circ$$

The claim is disagreed. 1A