

Dexter Wong & His Mathematics Team
Summer Course 2022 – 2023
MATHEMATICS Compulsory Part
S5 – S6 Core Assignment Set 7

Name: _____

Centre: _____

Lesson date: SUN/MON/TUE/WED/THU/FRI/SAT

INSTRUCTIONS

1. Attempt ALL questions in this paper. Write your answers in the spaces provided in this Question-Answer Book.
2. Unless otherwise specified, all workings (except for multiple choice questions) must be clearly shown.
3. Unless otherwise specified, numerical answers should be either exact or correct to 3 significant figures.
4. The diagrams in this paper are not necessarily drawn in scale.

Suggested solution

Distributed in summer course
S5 – S6 Core
Phase 2 – Lesson 3

1. C

Let length of each edge be 2. Let K be a point on BV such that $AK \perp BV$ and $CK \perp BV$.

$$AK = CK = 2 \sin 60^\circ = \sqrt{3} \text{ and } AC = \sqrt{2^2 + 2^2} = 2\sqrt{2}$$

In $\triangle AKC$, $\angle AKC$ is the required angle.

$$(2\sqrt{2})^2 = (\sqrt{3})^2 + (\sqrt{3})^2 - 2(\sqrt{3})^2 \cos \angle AKC$$

$$\angle AKC \approx 109^\circ$$

2. D

Let E be a point on CD such that $BE \perp CD$. Then $\theta = \angle AEB$.

$$CD = \sqrt{24^2 + 7^2} = 25 \text{ cm. By considering the area of } \triangle BCD,$$

$$\frac{(25)(BE)}{2} = \frac{(24)(7)}{2}$$

$$BE = \frac{168}{25}$$

$$\tan \theta = \frac{7}{BE} = \frac{25}{24}$$

3. C

Let the length of cube be 2. M and N be midpoints of BD and PQ respectively.

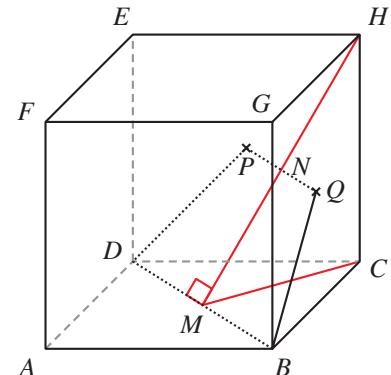
Note that since D, P, H are collinear and B, Q, H are collinear, we have M, N and H are collinear.

Note that $MH \perp BD$ and $CM \perp BD$.

The angle required is $\angle CMH$.

$$CM = \frac{1}{2}\sqrt{2^2 + 2^2} = \sqrt{2}.$$

$$\angle CMH = \tan^{-1} \frac{2}{\sqrt{2}} \approx 55^\circ.$$



4. D

Let K be a point on EG such that $AK \perp EG$.

Required angle is $\angle AKF$.

Consider the area of $\triangle EFG$.

$$\frac{1}{2}(8)(6) = \frac{1}{2}(EG)(FK)$$

$$24 = \frac{1}{2}\sqrt{8^2 + 6^2}(EK)$$

$$EK = 4.8 \text{ cm}$$

$$\tan \theta = \frac{12}{4.8}$$

$$\theta \approx 68^\circ$$

5. D

Let E be a point on AC such that $VE \perp AC$.

Required angle is $\angle VED$.

Since the pyramid is symmetric about the plane VAC ,
we have $\angle VEB = \angle VED = \frac{180^\circ}{2} = 90^\circ$.

6. B

Since BV is perpendicular to the plane VAC , $\angle BVA = \angle BVC = 90^\circ$.

$AB = BC = \sqrt{6^2 + 8^2} = 10$ cm and $BM = BN = 5$ cm

$\triangle BMN$ is equilateral. So, $MN = 5$ cm.

$$\angle VBM = \tan^{-1} \frac{8}{6}$$

$$VM^2 = 6^2 + 5^2 - (2)(6)(5) \cos \angle VBM$$

$$VM = 5$$

So, $VM = VN = MN = 5$ cm, and the required area is $\frac{1}{2}(5)^2 \sin 60^\circ = \frac{25\sqrt{3}}{4}$ cm².

7. B

Refer to the figure. Let E be the midpoint of BC and length of each side be 12 cm.

In $\triangle AED$, $AE = DE = 12 \sin 60^\circ = 6\sqrt{3}$ cm

$$12^2 = AE^2 + DE^2 - 2(AE)(DE) \cos \angle AED$$

$$\angle AED = \cos^{-1} \frac{1}{3}$$

Let X be the projection of A on the plane BCD . Then

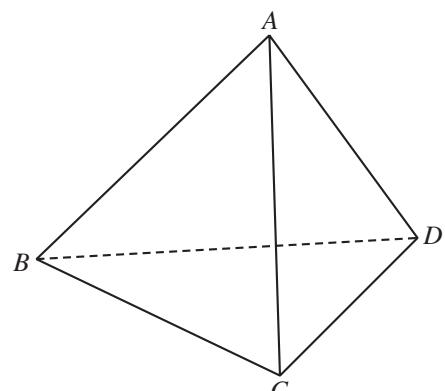
X is the centroid of $\triangle BCD$ and it lies on DE .

In $\triangle AEX$, $\angle AXE = 90^\circ$ and

height = $AE \sin \angle AED$

$$= \sqrt{96} \text{ cm}$$

$$\begin{aligned} \text{Volume} &= \frac{1}{2}(12)^2 \sin 60^\circ (\sqrt{96}) \times \frac{1}{3} \\ &= 144\sqrt{2} \text{ cm}^3 \end{aligned}$$



8. C

Let K be a point on VB such that $AK \perp VB$. We have $CK \perp VB$ also.

Required angle is $\angle AKC$.

$$AC = \sqrt{12^2 + 12^2} = 12\sqrt{2} \text{ cm}$$

$$VA = VB = VC = \sqrt{8^2 + \left(\frac{12\sqrt{2}}{2}\right)^2} = \sqrt{136} \text{ cm}$$

In $\triangle VAB$,

$$\cos \angle ABV = \frac{\left(\frac{12}{2}\right)}{VB}$$

$$\angle ABV \approx 59.0^\circ$$

$$AK = CK = 12 \sin \angle ABV \approx 10.3 \text{ cm}$$

In $\triangle AKC$,

$$AC^2 = AK^2 + CK^2 - 2(AK)(CK) \cos \angle AKC$$

$$\angle AKC \approx 111^\circ$$

9. A

Required angle is $\angle PHF$.

$$PF = 12 \times \frac{2}{1+2} = 8 \text{ cm and } FH = \sqrt{8^2 + 6^2} = 10 \text{ cm}$$

$$\tan \angle PHF = \frac{8}{10}$$

$$\angle PHF \approx 39^\circ$$

10. C

Let K be a point on AM such that $DK \perp AM$.

Then $\alpha = \angle EMD$ and $\beta = \angle EKD$.

I. ✓. Since $\angle DKM = 90^\circ$, we have $DK < DM$ and $\alpha < \beta$.

II. ✗. Since $\alpha < \beta$, we have $\cos \alpha > \cos \beta$.

III. ✓. $\angle DAM = \angle BMA = \tan^{-1} \frac{5}{2.5} \approx 63.4^\circ$

$$DK = AD \sin \angle DAM \approx 4.47 \text{ cm}$$

$$\tan \beta = \frac{DE}{DK} = \frac{4}{\sqrt{5}}$$

11. A

Let K be a point on ME such that $FK \perp ME$. [In fact, K is at the position of point M .]

Since $AF \perp EM$, we also have $AK \perp ME$. The angle required is therefore $\angle AKF$.

Since $MH = EH = 12 \text{ cm}$, $\angle EMH = 45^\circ$ and so $\angle FEM = 45^\circ$

$$FK = FE \sin \angle FEM = 12\sqrt{2} \text{ cm}$$

$$\text{Required angle} = \tan^{-1} \frac{AF}{FK} = \frac{10}{12\sqrt{2}} \approx 31^\circ$$

12. D

Let D be a point on BC such that $PD \perp BC$.

Required angle is $\angle ADP$.

$$\frac{BC = \sqrt{4^2 + 3^2} = 5 \text{ m}}{(PD)(BC) = \frac{(PB)(PC)}{2}}$$

$$PD = 2.4 \text{ m}$$

$$\begin{aligned}\tan \angle ADP &= \frac{5}{2.4} \\ &= \frac{25}{12}\end{aligned}$$

13. B

Let M and N be midpoints of BC and AD respectively.

Required angle is $\angle MVN$.

$$\begin{aligned}MV = NV &= \sqrt{8^2 - \left(\frac{4}{2}\right)^2} = \sqrt{60} \text{ cm} \\ 6^2 &= MV^2 + NV^2 - 2(MV)(NV) \cos \angle MVN\end{aligned}$$

$$\angle MVN \approx 46^\circ$$

14. C

$$15^2 = 9^2 + 12^2 \Rightarrow \angle BDC = 90^\circ.$$

Since $\triangle ABD$ is vertical and CD is horizontal, $AD \perp CD$.

Therefore, $\theta = \angle ADB = \tan^{-1} \frac{12}{9}$ and so $\sin \theta = \frac{4}{5}$.

15. C

Let M be a point on BC such that $AM \perp BC$.

Required angle is $\angle AMD$.

Let the length of each edge be 2.

$$AM = DM = \sqrt{2^2 - 1^2} = \sqrt{3}$$

In $\triangle ADM$,

$$2^2 = (\sqrt{3})^2 + (\sqrt{3})^2 - 2(\sqrt{3})(\sqrt{3}) \cos \angle AMD$$

$$\angle AMD \approx 71^\circ$$

16. B

Required angle is $\angle CBH$ (or $\angle DAE$).

$$\angle CBH = 45^\circ$$

17. B

Let $BC = 1$.

$$AE = BF = 1 \sin 60^\circ = \frac{\sqrt{3}}{2}$$

$$AC = \frac{AE}{\sin 30^\circ} = \sqrt{3}$$

$$\cos \angle ACB = \frac{BC}{AC} = \frac{1}{\sqrt{3}}$$

18. B

We have $\angle VAC = 60^\circ$.

Since $VA = VC$, we have $\angle VCA = \angle VAC = 60^\circ$ and $\triangle VAC$ is equilateral.

$$AC = \sqrt{1^2 + 1^2} = \sqrt{2} \text{ m}$$

$$VB = VA = VC = AC = \sqrt{2} \text{ m}$$

In $\triangle VAB$,

$$1^2 = VA^2 + VB^2 - 2(VA)(VB) \cos \angle AVB$$

$$\angle AVB \approx 41^\circ$$

19. (a) In $\triangle BEF$,

$$\begin{aligned} FE^2 &= k^2 + (rk)^2 - 2k(rk) \cos 60^\circ & 1M \\ &= k^2(1 - r + r^2) & 1A \end{aligned}$$

In $\triangle AFG$, $FG \perp AC$.

$$\begin{aligned} FG^2 &= (AF \sin 45^\circ)^2 & 1M \\ &= [(1 - r)k]^2 \sin^2 45^\circ \\ &= \frac{k^2(1 - r)^2}{2} & 1A \end{aligned}$$

(b) $EG = \sqrt{FE^2 - FG^2}$

$$\begin{aligned} &= \sqrt{k^2(1 - r + r^2) - \frac{k^2}{2}(1 - r)^2} & 1M \\ &= k\sqrt{\frac{1 + r^2}{2}} & 1A \end{aligned}$$

$$EN = AE \cos 45^\circ = \frac{k}{\sqrt{2}}$$

$$\sin \theta = \frac{EN}{EG} = \frac{1}{\sqrt{1 + r^2}}$$

(c) As r varies from 0 to 1, $\frac{1}{\sqrt{2}} \leq \sin \theta \leq 1$. 1M

Thus, $45^\circ \leq \theta \leq 90^\circ$. 1A

20. (a) $VM = \sqrt{12.5^2 - \left(\frac{20}{2}\right)^2} = 7.5 \text{ cm}$ 1M+1A

$$AM = \sqrt{26^2 - 10^2} = 24 \text{ cm} \quad \text{1M+1A}$$

(b) Required angle is $\angle VMA$. 1A

In $\triangle VMA$,

$$18^2 = 7.5^2 + 24^2 - 2(7.5)(24) \cos \angle VMA \quad 1M$$

$$\angle VMA \approx 31.1^\circ \quad 1A$$

(c) Let VH be the height of the tetrahedron. Then H lies on AM .

$$\sin \angle VMH = \frac{VH}{7.5} \quad 1M$$

$$VH \approx 3.87 \text{ cm}$$

$$\text{Area of } \triangle ABC = \frac{1}{2}(20)(24) = 240 \text{ cm}^2$$

$$\begin{aligned} \text{Volume of tetrahedron} &= \frac{1}{3}(240)(VH) & 1M \\ &\approx 310 \text{ cm}^3 & 1A \end{aligned}$$

21. (a) Let O be the circumcentre of circle $ABCD$.

$$\begin{aligned}
 \angle BAC &= \angle DAC && \text{(given)} \\
 \angle BOC &= 2\angle BAC && \text{(\angle at centre twice \angle at \odot^ce)} \\
 \angle DOC &= 2\angle DAC && \text{(\angle at centre twice \angle at \odot^ce)} \\
 &= \angle BOC \\
 BC &= CD && \text{(equal \angle s, equal chords)}
 \end{aligned}$$

Marking Scheme		
Case 1	Any correct proof with correct reasons.	3
Case 2	Any correct proof without reasons.	2
Case 3	Incomplete proof with any one correct step with reason.	1

(b) (i) Let the coordinates of M be $(a, -a)$ such that it lies on $y = -x$.

$$\begin{aligned}
 \sqrt{(a-0)^2 + (-a-0)^2} &= \sqrt{(a+200)^2 + (-a+600)^2} && 1M \\
 2a^2 &= 2a^2 - 800a + 400\,000 \\
 a &= 500
 \end{aligned}$$

Required equation is

$$\begin{aligned}
 (x-500)^2 + (y+500)^2 &= (0-500)^2 + (0+500)^2 \\
 (x-500)^2 + (y+500)^2 &= 500\,000 && 1A
 \end{aligned}$$

Coordinates of M are $(500, -500)$.

$$\begin{aligned}
 \text{(ii)} \quad (0-500)^2 + (y+500)^2 &= 500\,000 \\
 (y+500)^2 &= 250\,000 \\
 y &= -1000 \quad \text{or} \quad 0 \quad \text{(rejected)}
 \end{aligned}$$

Coordinates of C are $(0, -1000)$.

(c) Let K be a point on VC such that $BK \perp VC$.

Then $DK \perp VC$ and the required angle is $\angle BKD$.

$$BM = CM = DM = \sqrt{(500+200)^2 + (-500+600)^2} = 500\sqrt{2} \quad 1M$$

$$BC = CD = \sqrt{200^2 + (-1000+600)^2} = 200\sqrt{5}$$

$$VB = VC = VD = \sqrt{MB^2 + 50^2} = 50\sqrt{201}$$

$$MB^2 = MC^2 + BC^2 - 2(MC)(BC) \cos \angle BCM$$

$$\angle BCM \approx 71.6^\circ$$

$$BD = 2 \times BC \sin \angle BCM \approx 849 \quad 1M$$

$$VB^2 = VC^2 + BC^2 - 2(VC)(BC) \cos \angle VCB$$

$$\angle VCB \approx 71.6^\circ$$

$$DK = BK = BC \sin \angle VCB \approx 424$$

$$BD^2 = BK^2 + DK^2 - 2(BK)(DK) \cos \angle BKD \quad 1M$$

$$\angle BKD \approx 177^\circ \quad 1A$$