

Dexter Wong & His Mathematics Team
Summer Course 2022 – 2023
MATHEMATICS Compulsory Part
S5 – S6 Core Assignment Set 6

Name: _____

Centre: _____

Lesson date: SUN/MON/TUE/WED/THU/FRI/SAT

INSTRUCTIONS

1. Attempt ALL questions in this paper. Write your answers in the spaces provided in this Question-Answer Book.
2. Unless otherwise specified, all workings (except for multiple choice questions) must be clearly shown.
3. Unless otherwise specified, numerical answers should be either exact or correct to 3 significant figures.
4. The diagrams in this paper are not necessarily drawn in scale.

Suggested solution

Distributed in summer course
S5 – S6 Core
Phase 2 – Lesson 2

1. B

- I. ✓. Note that $\triangle AHF \cong \triangle DGE$, we have $\angle AHF = \angle DGE$.
- II. ✗. $\angle AGH = 90^\circ$ while $\angle DGE < 90^\circ$.
- III. ✓. Note that $\triangle BEG \cong \triangle DGE$, we have $\angle BEG = \angle DGE$.

2. B

- A. Required angle is $\angle EBF$.
- B. Required angle is $\angle ENF$.
- C. Let Q be a point on $ABGF$ such that PQ is perpendicular to $ABGF$.
Required angle is $\angle PFQ$, which is equal to $\angle FPE$.
- D. Let K be the midpoint of BG .
Required angle is $\angle MNK$, which is equal to $\angle CAB$.

By simple observation, we have $\angle ENF$ being the greatest angle among all.

The answer is B.

3. D

Let Q be the midpoint of AD .

Then $\theta = \angle PEQ$.

$$\begin{aligned}\tan \theta &= \frac{PQ}{EQ} \\ &= \frac{y}{\sqrt{x^2 + (2z)^2}} \\ &= \frac{y}{\sqrt{x^2 + 4z^2}}\end{aligned}$$

4. B

Let $AB = 1$.

In $\triangle ABD$, $AD = \frac{1}{\sin 30^\circ} = 2$ and $BD = \frac{1}{\tan 30^\circ} = \sqrt{3}$.

In $\triangle ABC$, $AC = \frac{1}{\sin 45^\circ} = \sqrt{2}$ and $BC = \frac{1}{\tan 45^\circ} = 1$.

$$CD^2 = 1^2 + (\sqrt{3})^2 - 2(1)(\sqrt{3}) \cos 150^\circ$$

$$CD = \sqrt{7}$$

$$CD^2 = AD^2 + AC^2 - 2(AD)(AC) \cos \angle CAD$$

$$\angle CAD \approx 100^\circ$$

5. C

Let N be the midpoint of GH .

Required angle is MFN .

$$MN = 24 \text{ cm}$$

$$FN = \sqrt{5^2 + 8^2}$$

$$= \sqrt{89} \text{ cm}$$

$$\tan \angle MFN = \frac{24}{\sqrt{89}}$$

$$\angle MFN \approx 69^\circ$$

6. C

A. $\tan \angle ACE = \frac{AE}{CE}$

B. $\tan \angle AQE = \frac{AE}{EQ}$

C. $\tan \angle ADE = \frac{AE}{DE}$

D. $\tan \angle PCR = \frac{PR}{CR} = \frac{AE}{CR}$

Since $DE < EQ = RC < CE$, we have $\tan \angle ADE$ being the greatest among all.

$\angle ADE$ is therefore the greatest angle among all.

The answer is C.

7. B

Since $VA = VB$, we have $\angle VAB = \frac{180^\circ - 60^\circ}{2} = 60^\circ$ and so all lateral faces are equilateral triangles.

Required angle is $\angle VAM$, where M is the projection of V on $ABCD$.

Let $AB = 2$. Then $VA = 2$ and $AM = \frac{1}{2}\sqrt{2^2 + 2^2} = \sqrt{2}$

$$\text{Required angle} = \angle VAM = \cos^{-1} \frac{\sqrt{2}}{2} = 45^\circ$$

8. D

$$PQ = CE = 40 \sin 10^\circ$$

$$DP = \frac{90}{1+2} = 30 \text{ m and } AP = \sqrt{30^2 + 40^2} = 50 \text{ m.}$$

$$\sin \theta = \frac{40 \sin 10^\circ}{50}$$

$$= \frac{4 \sin 10^\circ}{5}$$

9. C

We have $\theta = \angle BEG$.

$$EG = \sqrt{8^2 + 6^2} = 10 \text{ cm}$$

$$BE = \sqrt{10^2 + 4^2} = \sqrt{116} \text{ cm}$$

$$\begin{aligned}\cos \theta &= \frac{10}{\sqrt{116}} \\ &= \frac{5}{\sqrt{29}}\end{aligned}$$

10. B

Required angle is $\angle ACF$.

$$AC = \frac{AD}{\sin 60^\circ} = \frac{10}{\frac{\sqrt{3}}{2}} \text{ cm}$$

$$CD = \frac{AD}{\tan 60^\circ} = \frac{5}{\sqrt{3}} \text{ cm}$$

$$AF = DE = CD \sin 30^\circ = \frac{5}{2\sqrt{3}} \text{ cm}$$

$$\sin \angle ACF = \frac{AF}{AC}$$

$$\angle ACF \approx 14^\circ$$

11. D

Note that $DE < EG < FH$.

Since $\tan \alpha = \frac{AE}{EG}$, $\tan \beta = \frac{AE}{DE}$ and $\tan \gamma = \frac{BF}{FH} = \frac{AE}{FH}$, we have $\tan \beta > \tan \alpha > \tan \gamma$.

Therefore, we have $\beta > \alpha > \gamma$.

12. A

- A. Angle between AC and $BCHG$ is $\angle ACB$.
- B. Angle between DH and $BCHG$ is $\angle DHC$.
- C. Angle between DG and $BCHG$ is $\angle DGC$.
- D. Let Y be the midpoint of GH .

Angle between XB and $BCHG$ is $\angle XBY$.

By simple observation, we have $\angle ACB$ being the greatest angle among all.

The answer is A.

13. C

- I. ✓. Note that AD is perpendicular to the plane $CDEH$, we have $AD \perp DH$.
- II. ✗. Note that $\angle BAE = 90^\circ$, we have $\angle ABE = 180^\circ - 90^\circ - \angle BEA < 90^\circ$.
- III. ✓. Note that CH is perpendicular to the plane $ABCD$, we have $CH \perp AC$.

14. C

Let K be the midpoint of EF . The required angle is $\angle MNK$.

In $\triangle DEF$,

$$\frac{7}{\sin 50^\circ} = \frac{6}{\sin \angle DFE}$$

$$\angle DFE \approx 41.0^\circ \text{ or } 139^\circ \text{ (rejected)}$$

$$\angle DEF = 180^\circ - \angle DFE - 50^\circ \approx 89.0^\circ$$

$$NK^2 = \left(\frac{6}{2}\right)^2 + \left(\frac{7}{2}\right)^2 - 2\left(\frac{6}{2}\right)\left(\frac{7}{2}\right) \cos \angle DEF$$

$$NK \approx 4.57 \text{ cm}$$

In $\triangle MNK$,

$$\tan \angle MNK = \frac{5}{NK}$$

$$\angle MNK \approx 48^\circ$$

Required angle = 48°

15. D

Let G be the midpoint of BC .

Required angle is $\angle ADG$.

$$AG = 6 \sin 60^\circ = 3\sqrt{3} \text{ cm}$$

$$DG = \sqrt{3^2 + 10^2} = \sqrt{109} \text{ cm}$$

$$\tan \angle ADG = \frac{3\sqrt{3}}{\sqrt{109}}$$

$$\angle ADG \approx 26.5^\circ$$

16. B

Required angle is $\angle YXH$.

Let $CH = 2 \text{ cm}$.

$$\text{We have } YH = \frac{2}{2} = 1 \text{ cm and } XH = \sqrt{1^2 + 2^2} = \sqrt{5} \text{ cm.}$$

$$\tan \angle YXH = \frac{1}{\sqrt{5}}$$

$$\angle YXH \approx 24^\circ$$

17. B

Let H be a point on CF such that $GH \perp CF$. The angle required is $\angle GEH$.

$$GH = BC \times \frac{3}{2+3} = 28.8 \text{ cm}$$

$$FH = FC \times \frac{3}{5} = 8.4 \text{ cm and } EH = \sqrt{40^2 + 8.4^2} = \sqrt{1670.56} \text{ cm}$$

$$\text{Required angle} = \tan^{-1} \frac{28.8}{EH} \approx 35^\circ$$

18. A

Let the length of side of the cube be 2.

- I. ✓. EF is perpendicular to $ABFG$. So, $\angle BFE = 90^\circ$.
- II. ✓. AB is perpendicular to $ADEF$. So, $\angle BAE = 90^\circ$.
- III. ✗. $BE = \sqrt{2^2 + 2^2 + 2^2} = \sqrt{12}$. $EM = BM\sqrt{2^2 + 1^2} = \sqrt{5}$
 $EM^2 + BM^2 = 5 + 5 = 10 \neq BE^2$. So, $\angle BME \neq 90^\circ$.

19. C

$$BD = \sqrt{25^2 - 15^2} = 20 \text{ m}$$

$$32^2 = 22^2 + 20^2 - 2(22)(20) \cos \angle BDC$$

$$\angle BDC \approx 99.2^\circ$$

Let E be a point on CD produced such that $BE \perp CD$.

Required angle is $\angle BAE$.

$$BE = BD \sin(180^\circ - \angle BDC) \approx 19.7 \text{ m}$$

$$\sin \angle BAE = \frac{BE}{25}$$

$$\angle BAE \approx 52^\circ$$

20. B

Let E be a point on $ABCD$ such that VE is perpendicular to the plane $ABCD$.

Required angle is $\angle VCE$.

$$CE = \frac{1}{2}\sqrt{5^2 + 6^2} = \frac{\sqrt{61}}{2} \text{ cm}$$

$$\cos \angle VCE = \frac{CE}{8}$$

$$\angle VCE \approx 61^\circ$$

21. (a) $BC^2 = 30^2 + 30^2 - 2(30)(30) \cos 40^\circ$ 1M

$BC \approx 20.5 \text{ cm}$ 1A

(b) Since $\triangle ABC$ is equilateral, the circumcentre of $\triangle ABC$ coincides with centroid of $\triangle ABC$.

$$r = \frac{2}{3} \times BC \sin 60^\circ \quad 1M$$

$$\approx 11.8 \text{ cm} \quad 1A$$

(c) Required angle $= \cos^{-1} \frac{r}{30}$ 1M

$$\approx 66.7^\circ \quad 1A$$

22. (a) Let R be a point on GH such that $RS \perp GH$.

Required angle is $\angle RAS$. 1A

$$AD = \frac{30}{\sin 30^\circ} = 60 \text{ m} \quad 1M$$

$$AS = \sqrt{60^2 + 10^2} = 10\sqrt{37} \text{ m} \quad 1M$$

$$\sin \angle RAS = \frac{30}{10\sqrt{37}} \quad 1M$$

$$\angle RAS \approx 29.6^\circ \quad 1A$$

(b) Angle between DA and the plane $ABHG$ is $\angle DAG = 30^\circ$. 1A

Angle between CA and the plane $ABHG$ is $\angle CAH$. 1A

$$AC = \sqrt{60^2 + 20^2} = 20\sqrt{10} \text{ m} \quad 1M$$

$$\sin \angle CAH = \frac{30}{20\sqrt{10}} \quad 1M$$

$$\angle CAH \approx 28.3^\circ \quad 1A$$

$$\text{Mean of two angles} = \frac{30^\circ + \angle CAH}{2} \approx 29.2^\circ \neq \angle RAS$$

The claim is disagreed. 1A

23. (a) $BF = 200 \cos 40^\circ \approx 153 \text{ m}$ 1M

$$DE = CF = BF \sin 35^\circ \approx 87.9 \text{ m} \quad 1M$$

$$\sin \angle EBD = \frac{DE}{200} \quad 1M$$

$$\angle EBD \approx 26.1^\circ \quad 1A$$

The inclination of BE is 26.1° . 1A

(b) Consider $\triangle ETX$, $\angle ETX = 180^\circ - 90^\circ - 70^\circ = 20^\circ$

$$\angle TXE = 70^\circ - \angle EBD \approx 43.9^\circ \quad 1A$$

$$\frac{EX}{\sin 20^\circ} = \frac{60}{\sin \angle TXE} \quad 1M$$

$$EX \approx 29.6 \text{ m} \quad 1A$$

$$BX = 200 - EX \approx 170 \text{ m} \quad 1A$$

24. (a) (i) $CD^2 = 25^2 + 6^2 - 2(25)(6) \cos 57^\circ$ 1M
 $CD \approx 22.3 \text{ cm}$ 1A

(ii) $\frac{\sin \angle BAC}{25} = \frac{\sin 57^\circ}{28}$ 1M
 $\angle BAC \approx 48.5^\circ \text{ or } 132^\circ \text{ (rejected)}$ 1A

(iii) Area of $\triangle ABC = \frac{1}{2}(28)(25) \sin(180^\circ - 57^\circ - \angle BAC)$ 1M
 $\approx 337 \text{ cm}^2$ 1A

(iv) $CE = \sqrt{25^2 - 24^2} = 7 \text{ cm}$ 1A
 $AE = \sqrt{28^2 - 7^2} = \sqrt{735} \text{ cm}$
 $AB^2 = 28^2 + 25^2 - 2(28)(25) \cos \angle ACB$
 $AB \approx 32.2 \text{ cm}$
Let $s = \frac{AB + AE + BE}{2}$.
Area of $\triangle ABE = \sqrt{s(s - AB)(s - AE)(s - BE)}$
 $\approx 318 \text{ cm}^2$

Let $h \text{ cm}$ be the shortest distance from E to the horizontal ground.

$$\frac{h}{3}(\text{area of } \triangle ABC) = \frac{1}{3}(\text{area of } \triangle ABE)(CE) \quad 1M$$

$$h \approx 6.60 \quad 1A$$

Required distance is 6.60 cm.

(b) $DE = \sqrt{CD^2 - 7^2} \approx 21.2 \text{ cm}$
Let $d \text{ cm}$ be the perpendicular distance from E to CD .

$$\frac{d(CD)}{2} = \frac{(CE)(DE)}{2} \quad 1M$$

$$d = \frac{(CE)(DE)}{CD}$$

$$\approx 6.65 \neq 6.60$$

So, the perpendicular distance from E to CD and the shortest distance from E to the horizontal ground are different.

Thus, the claim is disagreed. 1A