

Dexter Wong & His Mathematics Team
Summer Course 2022 – 2023
MATHEMATICS Compulsory Part
S4 – S5 Core Assignment Set 7

Name: _____

Centre: _____

Lesson date: SUN/MON/TUE/WED/THU/FRI/SAT

INSTRUCTIONS

1. Attempt ALL questions in this paper. Write your answers in the spaces provided in this Question-Answer Book.
2. Unless otherwise specified, all workings (except for multiple choice questions) must be clearly shown.
3. Unless otherwise specified, numerical answers should be either exact or correct to 3 significant figures.
4. The diagrams in this paper are not necessarily drawn in scale.

Suggested solution

Distributed in summer course
S4 – S5 Core
Phase 2 – Lesson 3

1. B

Coordinates of centre are $(1, 0)$.
Slope of radius connecting A = $\frac{0-1}{1-0}$
 $= -1$

Slope of tangent = 1
Required equation is $y = x + 1$.

2. A

Let the equation of L be $y = mx$ such that L passes through the origin.

$$\begin{aligned}x^2 + (mx)^2 - x + 5(mx) + 2 &= 0 \\(1 + m^2)x^2 + (5m - 1)x + 2 &= 0 \\\Delta = (5m - 1)^2 - 4(1 + m^2)(2) &= 0 \\17m^2 - 10m - 7 &= 0 \\m = 1 \quad \text{or} \quad -\frac{7}{17} &\end{aligned}$$

We have $m = 1$.

$$\begin{aligned}(1 + 1^2)x^2 + (5 - 1)x + 2 &= 0 \\2x^2 + 4x + 2 &= 0 \\x = -1 &\end{aligned}$$

When $x = -1$, $y = (1)(-1) = -1$.

The coordinates of P are $(-1, -1)$.

3. D

$$\begin{aligned}(0)^2 + y^2 + 4(0) - 4 &= 0 \\y^2 - 4 &= 0 \\y = 2 \quad \text{or} \quad -2 &\end{aligned}$$

$$(0) - (2) + k = 0$$

$$k = 2$$

$$\begin{aligned}x^2 + (x + 2)^2 + 4x - 4 &= 0 \\2x^2 + 8x &= 0 \\x = 0 \quad \text{or} \quad -4 &\end{aligned}$$

When $x = -4$, $y = (-4) + 2 = -2$.

Coordinates of B are $(-4, -2)$.

4. A

$$\begin{aligned}x^2 + (2x + 1)^2 - x + 2(2x + 1) &= 0 \\5x^2 + 7x + 3 &= 0 \\\Delta = 7^2 - 4(5)(3) &= -11 < 0\end{aligned}$$

Required number is 0.

5. B

Since $\angle AOB = 90^\circ$, AB is a diameter of the circle.

Coordinates of centre are $\left(-\frac{5}{2}, -3\right)$.

$$\begin{aligned}\text{Slope of radius connecting the origin} &= \frac{-3 - 0}{-\frac{5}{2} - 0} \\ &= \frac{6}{5}\end{aligned}$$

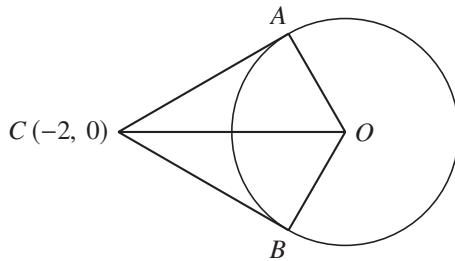
Slope of tangent $= -\frac{5}{6}$

Required equation is $5x + 6y = 0$.

6. D

Radius of circle $= 1$; $\angle AOC = \cos^{-1} \frac{1}{2} = 60^\circ$

$$\angle AOB = 120^\circ \text{ and } AB = \sqrt{1^2 + 1^2 - 2(1)(1) \cos 120^\circ} = \sqrt{3}$$



7. C

$$(x - 1)^2 + (0 + 1)^2 = 5$$

$$(x - 1)^2 = 4$$

$$x - 1 = \pm 2$$

$$x = 3 \quad \text{or} \quad -1$$

$$AB = 3 - (-1) = 4$$

Radius of circle $= 2\sqrt{5}$

$$BC = \sqrt{(2\sqrt{5})^2 - (4)^2} = 2$$

$$\text{Required area} = (4)(2) = 8$$

8. D

$$x^2 + (x + 4)^2 - 4x - 16 = 0$$

$$2x^2 + 4x = 0$$

$$x = 0 \quad \text{or} \quad -2$$

When $x = 0$, $y = 0 + 4 = 4$; when $x = -2$, $y = -2 + 4 = 2$.

Required coordinates are $(0, 4)$ and $(-2, 2)$.

9. (a) Slope of $L_2 = \frac{3}{4}$ 1M

So, slope of $L_1 = -\frac{4}{3}$.

The coordinates of the centre of C are $(5, 0)$.

The equation of L_1 is

$$y - 0 = -\frac{4}{3}(x - 5) \quad 1M$$

$$4x + 3y - 20 = 0 \quad 1A$$

(b) $x^2 + \left(-\frac{4x}{3} + \frac{20}{3}\right)^2 - 10x = 0 \quad 1M$

$$\left(1 + \frac{16}{9}\right)x^2 + \left(-\frac{160}{9} - 10\right)x + \frac{400}{9} = 0$$

$$\frac{25}{9}x^2 - \frac{250}{9}x + \frac{400}{9} = 0 \quad 1M$$

$$x = 8 \quad \text{or} \quad 2$$

When $x = 8$, $y = -\frac{4}{3}(8) + \frac{20}{3} = -4$; when $x = 2$, $y = 4$.

The coordinates of the intersections are $(8, -4)$ and $(2, 4)$. 1A

10. (a) $x^2 + \left(\frac{2x}{3}\right)^2 - 12x - 8\left(\frac{2x}{3}\right) + 39 = 0 \quad 1M$

$$\left(1 + \frac{4}{9}\right)x^2 + \left(-12 - \frac{16}{3}\right)x + 39 = 0$$

$$\frac{13}{9}x^2 - \frac{52}{3}x + 39 = 0 \quad 1M$$

$$x = 3 \quad \text{or} \quad 9$$

When $x = 3$, $y = 2$; when $x = 9$, $y = 6$.

The coordinates of P and Q are $(3, 2)$ and $(9, 6)$ respectively. 1A+1A

(b) (i) Denote the centre of C_1 by G . Then coordinates of G are $(6, 4)$. 1M

$$\text{Slope of } GP = \frac{4 - 2}{6 - 3} = \frac{2}{3}.$$

So, slope of the common tangent is $-\frac{3}{2}$. 1M

The equation of the common tangent is

$$y - 2 = -\frac{3}{2}(x - 3)$$

$$3x + 2y - 13 = 0 \quad 1A$$

(ii) The slope of L is $\frac{2}{3}$ and is perpendicular to the tangent to C_1 at P .

Therefore, L passes through the centre of C_2 .

So, centre of C_2 is the midpoint of OP , whose coordinates are $\left(\frac{3}{2}, 1\right)$.

The equation of C_2 is

$$\left(x - \frac{3}{2}\right)^2 + (y - 1)^2 = \left(0 - \frac{3}{2}\right)^2 + (0 - 1)^2 \quad 1M$$

$$x^2 + y^2 - 3x - 2y = 0 \quad 1A$$

11. (a) Coordinates of centre are $(-4, 0)$.

Slope of $CA = \frac{0+4}{-4+7} = \frac{4}{3}$. So, slope of tangent at $A = -\frac{3}{4}$.
The equation of tangent at A is

1M

$$y + 4 = -\frac{3}{4}(x + 7)$$

$$3x + 4y + 37 = 0$$

1A

As CB is vertical, tangent at B is horizontal.

1M

The equation of tangent at B is $y = 5$.

1A

(b) $3x + 4(5) + 37 = 0$

1M

$$x = -19$$

Coordinates of D are $(-19, 5)$.

1A

(c) $\angle CAD = 90^\circ$ (*tangent \perp radius*)

$\angle CBD = 90^\circ$ (*tangent \perp radius*)

1M

$$\angle CAD + \angle CBD = 90^\circ + 90^\circ = 180^\circ$$

Thus, A, B, C and D are concyclic. (*opp. \angle s supp.*)

1A

12. (a) $x^2 + (1-x)^2 - 2x + 6(1-x) + 1 = 0$

1M

$$(1+1)x^2 + (-2-2-6)x + (1+6+1) = 0$$

$$2x^2 - 10x + 8 = 0$$

1M

$$x = 1 \quad \text{or} \quad 4$$

When $x = 1$, $y = 1 - 1 = 0$; when $x = 4$, $y = -3$

The coordinates of A and B are $(1, 0)$ and $(4, -3)$ respectively.

1A+1A

(b) The smallest circle has AB as a diameter.

$$\text{Coordinates of centre} = \left(\frac{1+4}{2}, \frac{0-3}{2} \right) = \left(\frac{5}{2}, \frac{-3}{2} \right)$$

1M

The equation of the circle is

$$\left(x - \frac{5}{2} \right)^2 + \left(y + \frac{3}{2} \right)^2 = \left(1 - \frac{5}{2} \right)^2 + \left(0 + \frac{3}{2} \right)^2$$

1M

$$\left(x - \frac{5}{2} \right)^2 + \left(y + \frac{3}{2} \right)^2 = \frac{9}{2}$$

1A

13. (a) $x^2 + \left(\frac{1}{3}x\right)^2 - 4x - 4\left(\frac{1}{3}x\right) = 0$ 1M
 $\frac{10}{9}x^2 - \frac{16}{3}x = 0$
 $x = 0 \quad \text{or} \quad \frac{24}{5}$

When $x = \frac{24}{5}$, $y = \frac{8}{5}$. The coordinates of P are $\left(\frac{24}{5}, \frac{8}{5}\right)$. 1A

$$\text{Length of } OP = \sqrt{\left(\frac{24}{5}\right)^2 + \left(\frac{8}{5}\right)^2} = \frac{8\sqrt{10}}{5} \quad 1A$$

(b) Let the coordinates of Q be (a, b) . Since $PQ = OP$,

$$\left(a - \frac{24}{5}\right)^2 + \left(b - \frac{8}{5}\right)^2 = \left(\frac{8\sqrt{10}}{5}\right)^2 \quad 1M$$

$$a^2 + b^2 - \frac{48}{5}a - \frac{16}{5}b = 0$$

Since (a, b) lies on the circle, $a^2 + b^2 - 4a - 4b = 0$.

$$\left(-\frac{48}{5}a - \frac{16}{5}b\right) - (-4a - 4b) = 0 \quad 1M$$

$$-\frac{28}{5}a + \frac{4b}{5} = 0$$

$$b = 7a$$

Substitute $b = 7a$ into $a^2 + b^2 - 4a - 4b = 0$,

$$a^2 + (7a)^2 - 4a - 4(7a) = 0$$

$$50a^2 - 32a = 0$$

$$a = \frac{16}{25} \quad \text{or} \quad 0$$

When $a = \frac{16}{25}$, $b = \frac{112}{25}$. The coordinates of Q are $\left(\frac{16}{25}, \frac{112}{25}\right)$. 1A

The coordinates of the centre of circle are $(2, 2)$.

$$\text{Slope of } CQ = \frac{\frac{112}{25} - 2}{\frac{16}{25} - 2} = -\frac{31}{17} \quad 1M$$

$$\text{Slope of tangent to the circle at } Q = \frac{17}{31} \quad 1M$$

The equation of tangent to the circle at Q is

$$y - \frac{112}{25} = \frac{17}{31} \left(x - \frac{16}{25}\right) \quad 1M$$

$$775y - 3472 = 425x - 272$$

$$17x - 31y + 128 = 0 \quad 1A$$

14. (a) Substitute $(-2, 1)$,

$$\begin{aligned} \text{LHS} &= (-2)^2 + 1^2 - 10(1) + 5 \\ &= 0 = \text{RHS} \end{aligned}$$

1M

Thus, $P(-2, 1)$ lies on the circle.

1

(b) Coordinates of centre C are $(0, 5)$.

$$\text{Slope of } CP = \frac{5-1}{0+2} = 2$$

So, slope of the tangent $L = -\frac{1}{2}$.

1M

The equation of tangent is

$$y - 1 = -\frac{1}{2}(x + 2)$$

$$x + 2y = 0$$

1A

(c) Let the point of contact of L_1 and S be A .

If L_1 is parallel to L , then C is the midpoint of AP .

1M

Coordinates of A are $(2, 9)$.

The equation of L_1 is

$$y - 9 = -\frac{1}{2}(x - 2)$$

$$x + 2y - 20 = 0$$

1M

1A

15. (a) $x^2 + \left(-\frac{3x}{4} + \frac{17}{2}\right)^2 - 6x - 16 = 0$

1M

$$\begin{aligned} \left(1 + \frac{9}{16}\right)x^2 + \left(-\frac{51}{4} - 6\right)x + \left(\frac{289}{4} - 16\right) &= 0 \\ \frac{25}{16}x^2 - \frac{75x}{4} + \frac{225}{4} &= 0 \end{aligned}$$

$$x = 6 \text{ (repeated)}$$

1M

Thus, L is a tangent to C .

1

(b) By (a), when $x = 6$, $y = -\frac{3(6)}{4} + \frac{17}{2} = 4$.

The coordinates of A are $(6, 4)$.

1A

(c) Let G be the centre of circle C . Coordinates of G are $(3, 0)$.

1M

Let $B(r, s)$ be the point of contact of L_1 and C .

Then AGB is a diameter and so G is midpoint of AB .

$$\frac{6+r}{2} = 3$$

$$\frac{4+s}{2} = 0$$

$$r = 0$$

$$s = -4$$

1M

The coordinates of the point of contact are $(0, -4)$.

1A

16. (a) Let slope of a straight line through R be m . It has an equation $y = mx - 3$.

$$\begin{aligned}x^2 + (mx - 3)^2 + 8x + 6(mx - 3) + 17 &= 0 \\(1 + m^2)x^2 + (-6m + 8 + 6m)x + (9 - 18 + 17) &= 0 \\(1 + m^2)x^2 + 8x + 8 &= 0\end{aligned}$$

Since $y = mx - 3$ is a tangent to the circle,

$$\begin{aligned}8^2 - 4(1 + m^2)(8) &= 0 & 1M \\m^2 &= 1 \\m &= \pm 1\end{aligned}$$

The equation of L_1 and L_2 are $y = -x - 3$ and $y = x - 3$ respectively. 1A+1A

(b) By (a),

$$\begin{aligned}(1 + 1)x^2 + 8x + 8 &= 0 \\x^2 + 4x + 4 &= 0 \\x &= -2\end{aligned}$$

Put $x = -2$ into L_1 , $y = -1$. The coordinates of P are $(-2, -1)$. 1A

Put $x = -2$ into L_2 , $y = -5$. The coordinates of Q are $(-2, -5)$. 1A

(c) Area of $\triangle PQR = \frac{1}{2}(-1 + 5)(2)$ 1M

$$\begin{aligned}&= 4 & 1A\end{aligned}$$

17. (a) (i) Since G is centroid of $\triangle OAB$, P and Q are midpoints of AB and OA respectively.

$$PQ \parallel OB \text{ and } QP = \frac{1}{2}OB \quad (\text{mid-point theorem})$$

In $\triangle PGQ$ and $\triangle OGB$,

$$\angle PGQ = \angle OGB \quad (\text{vert. opp. } \angle s)$$

$$\angle PQG = \angle OBG \quad (\text{alt. } \angle s, QP \parallel OB)$$

$$\angle QPG = \angle BOG \quad (\text{alt. } \angle s, QP \parallel OB)$$

$$\triangle PGQ \sim \triangle OGB \quad (\text{AAA})$$

Marking Scheme	
Case 1	Any correct proof with correct reasons. 3
Case 2	Any correct proof without reasons. 2
Case 3	Incomplete proof with any one correct step with reason. 1

$$(ii) \triangle PGQ \sim \triangle OGB \quad (\text{proved})$$

$$\begin{aligned} \frac{GQ}{BG} &= \frac{QP}{OB} \quad (\text{corr. sides., } \sim \triangle s) \\ &= \frac{\frac{1}{2}OB}{OB} \quad (\text{proved}) \\ &= \frac{1}{2} \end{aligned}$$

Thus, $BG : GQ = 2 : 1$.

Marking Scheme	
Case 1	Any correct proof with correct reasons. 2
Case 2	Any correct proof without reasons. 1

(b) (i) Let (m, n) and $(b, 0)$ be the coordinates of Q and B respectively.

Since $BG : GQ = 2 : 1$,

$$\begin{aligned} \frac{n-1}{1-0} &= \frac{1}{2} \\ n &= \frac{3}{2} \end{aligned}$$

Since Q lies on OA , when $n = \frac{3}{2}$, $m = 2 \times \frac{3}{2} = 3$.

The coordinates of Q are $\left(3, \frac{3}{2}\right)$.

1M

$$\begin{aligned} \frac{b-5}{5-3} &= \frac{2}{1} \\ b &= 9 \end{aligned}$$

The coordinates of B are $(9, 0)$.

1A

(ii) Let $S(p, q)$ be the circumcentre of $\triangle OAB$.

Since S lies on the perpendicular bisector of OB , $p = \frac{9}{2}$.

1M

Since $OA \perp SQ$,

$$\frac{1}{2} \times \frac{q - \frac{3}{2}}{\frac{9}{2} - 3} = -1$$

$$q = -\frac{3}{2}$$

The coordinates of the circumcentre are $\left(\frac{9}{2}, -\frac{3}{2}\right)$.

1M+1M

1A