REG-LP-2223-ASM-SET 2-MATH

Suggested solutions

Multiple Choice Questions

1. **C**

Greatest value of x + 3y + 4 occurs at top right corner.

Compare points A, B and C:

(x, y)	(4, 0)	(3, 2)	(0, 4)
x + 3y + 4	8	13	16

Required value is 16.

2. A

3x + y - 1 is smaller when x and y are smaller.

3x + y - 1 attains its minimum at the bottom left corner.

Coordinates of the bottom left corners are (2, 3) and (3, 1).

(x, y)	(2, 3)	(3, 1)
3x + y - 1	8	9

Required value is 8.

3. **C**

x - 2y + 10 is greater when x is larger and y is smaller.

x - 2y + 10 attains its greatest value at the bottom right corner.

Coordinates of the bottom right corner (A) are (40, 0).

Required value = (40) - 2(0) + 10

= 50

4. D

The value of 7y - 5x + 3 is larger when x is small and y is large, i.e., top left corner S.

5. A

We have P(0, 9), Q(9, 6) and R(12, 0).

(x, y)	(0, 9)	(9, 6)	(12, 0)	(0, 0)
x + 2y - 5	13	16	7	-5

Required value is 16.

6. D

Maximum value of 3x - 2y + 15 occurs at the bottom right corners, B(3, 3) or C(2, 0).

(x, y)	B(3, 3)	C(2, 0)
3x - 2y + 15	18	21

Maximum value = 21

7. **A**

x + 3y is larger when x and y are larger.

x + 3y attains its greatest value at the top right corners.

Coordinates of the top right corners are (3, 4) and (5, 3).

(x, y)	(3, 4)	(5, 3)
x + 3y	15	14

Required value is 15.

8. B

(x, y)	(-4, 3)	(-1, 2)	(2, -1)	(3, -3)
2x + 3y + 5	6	9	6	2

Required value is 9.

9. A

The value of 2x - 3y + 35 is larger when x is large and y is small, i.e., bottom right corners P(0, -7) or Q(6, -1).

(x, y)	P(0, -7)	Q (6, -1)
2x - 3y + 35	56	50

Required point is *P*.

10. **C**

3x + 2y is larger when x and y are larger.

3x + 2y attains its greatest value at the top right corners.

Coordinates of the top right corners are (0, 4) and (4, 1).

(x, y)	(0, 4)	(4, 1)
3x + 2y	8	14

Required value is 14.

11. B

2x - y + 10 is smaller when x is smaller and y is larger.

2x - y + 10 attains its least value at the top left corners.

Coordinates of the top left corners are C(0, 30).

Required value =
$$2(0) - (30) + 10$$

$$= -20$$

12. **B**

32 - 2x - 3y is smaller when x and y are larger.

32 - 2x - 3y attains its least value at the top right corners.

Coordinates of the top right corners are B(6, 6).

Required value =
$$32 - 2(6) - 3(6)$$

$$= 2$$

13. **C**

The value of 3x - y + 16 is larger when x is large and y is small, i.e., bottom right corner C (8, 0). Required value = 3(8) - 0 + 16 = 40

14. B

2x - y + 4 is larger when x is larger and y is smaller.

2x - y + 4 attains its greatest value at the bottom right corners.

Coordinates of the bottom right corners are X(9, -2) and Y(3, -4).

(x, y)	(9, -2)	(3, -4)
2x - y + 4	24	14

Required point is X.

15. C

The value of x + 3y + 4 is larger when x and y are large, i.e., top right corners A, B or C.

The coordinates of A, B and C are (4, 0), (3, 2) and (0, 4) respectively.

(x, y)	A (4, 0)	B (3, 2)	C (0, 4)
x + 3y + 4	8	13	16

Required value = 16

16. D

Note that q > p > 0.

px - qy is smaller when x is smaller and y is larger.

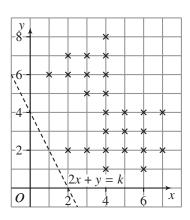
px - qy attains its least value at the top left corner.

Coordinates of the top left corners are (-p, q) and (-q, -p).

(x, y)	(-p, q)	(-q, -p)
px - qy	$-p^2-q^2$	0

Since $-p^2 - q^2 < 0$, required point is (-p, q).

17. D

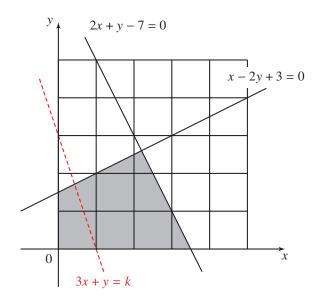

From the graph, we have b > a > 0.

The value of bx - ay + 3 is larger when x is large and y is small, i.e., bottom right corner (b, -a).

18. D

Draw the line 2x + y = k, where k is a constant.

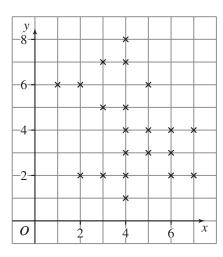
2x + y + 4 attains its maximum at (7, 4).



19. D

Draw the line 3x + y = k, where k is a constant.

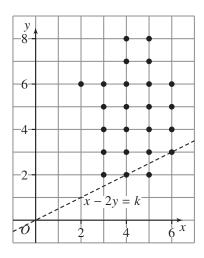
The value of 3x + y is maximum at (3, 1).


Required value = 3(3) + 1 = 10

20. D

Draw the straight lines $x + y = k_1$, $x - y = k_2$ and $5x + y = k_3$, where k_1 , k_2 and k_3 are constants.

- I. X. x + y attains its minimum at (2, 2).
- II. **√**.
- III. ✓.

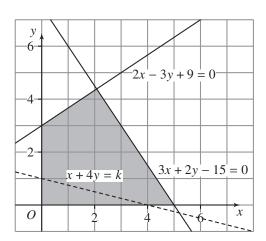

21. **C**

Draw the line x - 2y = k, where k is a constant.

x - 2y attains its maximum at (5, 2).

Required value =
$$5 - 2(2)$$

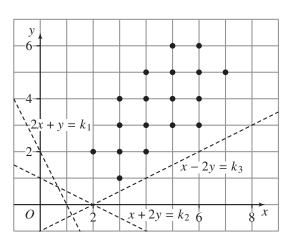
= 1



22. **C**

Draw the line x + 4y = k, where k is a constant.

x + 4y attains its maximum at (2, 4).


Required value =
$$2 + 4(4)$$

23. B

Draw the lines $2x + y = k_1$, $x + 2y = k_2$ and $x - 2y = k_3$, where k_1 , k_2 and k_3 are constants.

- I. \mathbf{X} . 2x + y attains its least value at (2, 2).
- II. ✓.
- III. X. x 2y attains its least value at (5, 6).

24. B

Draw the line 3x + y = k, where k is a constant.

3x + y attains its least value at C(0, 26).

Required value =
$$3(0) + 26$$

Conventional Questions

- 25. (a) Slope of $L_2 = \frac{1-0}{2-0} = \frac{1}{2}$.
 - The equation of L_2 is $y = \frac{x}{2}$.
 - (b) Consider the line x + y = 9. When x = 2, y = 7.

The coordinates of B are (2, 7).

Solving
$$\begin{cases} y = 2x \\ x + y = 9 \end{cases}$$
, we have $x = 6$ and $y = 3$.

The coordinates of C are (6, 3).

(c)	(x, y)	(2, 1)	(2, 7)	(6, 3)	1M
(0)	P	1	-41	3	1111

Thus, the least value of P is -41.

- 26. (a) Solve $\begin{cases} 4x + y 5 = 0 \\ x 2y + 7 = 0 \end{cases}$ we have $x = \frac{1}{3}$ and $y = \frac{11}{3}$.

 The coordinates of C are $\left(\frac{1}{3}, \frac{11}{3}\right)$.
 - (b) $4x + y 5 \le 0$ $3x + 2y + 5 \ge 0$ $x - 2y + 7 \ge 0$ 1A
 - (c) Coordinates of the corners are (3, -7), (-3, 2) and $\left(\frac{1}{3}, \frac{11}{3}\right)$.

(x, y)	(3, -7)	(-3, 2)	$\left(\frac{1}{3}, \frac{11}{3}\right)$	
3x - 12y + 7	100	-26	-36	1M

Required value is –36.

27. (a) Equation of L_2 is

$$y - 0 = 2(x - 3)$$

$$2x - y - 6 = 0$$
1A

Equation of L_3 is

$$y - 6 = \frac{0 - 6}{6 - 0}(x - 0)$$

$$x + y - 6 = 0$$
1A

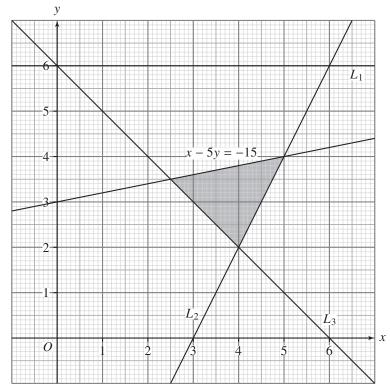
(b)
$$y \le 6$$

 $2x - y \le 6$
 $x + y \ge 6$
1A

(c) (i) Coordinates of the vertices are (0, 6), (4, 2) and (6, 6).

(x, y)	(0, 6)	(4, 2)	(6, 6)	
x - 5y + 10	-20	4	-14	

P attains its greatest value at (4, 2).


1A

Greatest value of *P* is 4.

(ii)
$$P = x - 5y + 10 \ge -5$$

$$x - 5y \ge -15$$

Draw the line x - 5y = -15.

1A

1M

1A

We have $2.5 \le x \le 5$.

1A