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= f(u) du

=2cosdt +2sin2t — 1
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2. (a) $u=—x-Hldu=—d-

0 0
f f(x)dxz—f f(—u) du
= f(—u)du
0
= f f(=x)dx
0

a 0 a
(b) f f<x>dx=f f<x>dx+fof<x>dx
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0 0
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(c) fflx) = ln(\/e6 + x6 —x3) + cos % o
fx) +f(=x)
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3. (@) u=-x°Hldu=-dx- 1M

a 0 a
ff(X)dx:ff(X)dx+ff(X)dx IM
- _aO 0 a
—ff(—u)du+ff(x)dx
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! [ln( +sin’x — smx) + ln( e3 + (—sinx)? - (—sinx)” dx M
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(d) Bu=x—om-Hlde=dx-

2
f In (63 +2sinx+2 sinxVe3 + sin’ x) dx
0

Jar
= f In <e3 +2sin> (o +u) + 2sin(r + u)\/e3 +sin’ (o7 + u)) du
—Jr

Jr
= f In ((63 +sin u) — 2sinuye3 + sin® u + sin’ u) du
—JTr
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—JT
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4., (@) mu=a—-x-°Rlldu=—-dx-

3 [ v ssa-xac=; [ e s [ ra-na
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_1 a " 1 0
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) du

1 r 1 r
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=ff(x)dx
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(b) x2-6x+18=(x-3)2+9
Hx—3=3tanf - H dx = 3sec20do -

e R
o x2—6x+18 Jy (x=3)2+9

T 3sec?0
f._%;_w
-7 9tan” 0 +9
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fx) +f(6-x)

1 1
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1 e3—x

(x2 —6x+18)(e3* + 1) " (x2 —6x + 18)(1 + 37)

1
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J‘ dx
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(a)

ey =x3 o Hj du = 3x%dx o

fxzsinx3dx= %fsinudu

cosu

== 3 +’$"§5’Z
3
- -2
() FHu=a+b—x-Hldu=—dx-
J'b f(x)
g fla+b—x)+f(x)
“ fla+b-u

- b f(u)+f(a+b—u)du

b
B fla+b—u)
_L f(u) +f(a+b-u) du
b
B fla+b—x)
B L fx) +f(a+b—x)dx
b f(x)
g fla+b—x)+f(x)

fla+b—-x)

[ [ fb
2 [L fla+b-x) +f(x)der o S
1 b

== |

2 a
-3,
_2xa

b-a
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(ii) B u=x3c H]du =3x2dx -
J‘3Vl°g6 x?%sinx3
3

dx
flogs sin(log30 — x3) + sinx3

1 log 6 .
_ _J‘ sinu du
3 Jiogs sin(log5 +1log6 —u) + sinu

log6 —log5
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(b) lensin2xdx— lensin[2(z—x)]dx M
0 0 4
%
=f Incos 2x dx 1
0
(c) B¢2x =t~ H|2dx =dr - M
T 1 2
f lnsin4xdx=—f Insin2¢ dz
0 2 0
11 T z
=5 f 1nsin2tdt+f Insin 2¢ dt 1M
| Jo T
1 %1 in2rdr + %1 [2( +1)]d here u = £ — M
=3 . nsin . nsin u 7 u| whereu = Z}
1l T T
== f 1nsin2tdt+f Incos2udu
2| Jo 0
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T T
f Insin2x dx + f In sin2xdx]
0 0

T

T
= f In sin 2x dx
0

T 7
(d) f Insin4xdx = f
0 0

T T T
ln2[x]4 +f lnsin2xdx+f Incos 2x dx
0 0 0

(In2 + Insin 2x + Incos 2x) dx
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T
+ 2f In sin 4x dx
0
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