

Dexter Wong & His Mathematics Team  
Summer Course 2022 – 2023  
MATHEMATICS Compulsory Part  
S5 – S6 Core Assignment Set 3

Name: \_\_\_\_\_

Telephone: \_\_\_\_\_

Student number: \_\_\_\_\_

Centre: \_\_\_\_\_

Lesson date: SUN/MON/TUE/WED/THU/FRI/SAT

#### **INSTRUCTIONS**

1. Attempt ALL questions in this paper. Write your answers in the spaces provided in this Question-Answer Book.
2. Unless otherwise specified, all workings (except for multiple choice questions) must be clearly shown.
3. Unless otherwise specified, numerical answers should be either exact or correct to 3 significant figures.
4. The diagrams in this paper are not necessarily drawn in scale.

#### **Suggested solution**



Distributed in summer course  
S5 – S6 Core  
Phase 1 – Lesson 3

1. B

$$\text{Discriminant} = (k - 3)^2 - 4(1)(2k)$$

$$= k^2 - 14k + 9$$

$$\text{Required value} = -\frac{-14}{2} = 7$$

2. D

Let the vertex of the graph of  $y = f(x)$  be  $(h, 6)$ .

$$h = -\frac{-12}{2(2-q)} = \frac{6}{2-q}$$

$$6 = (2-q) \left( \frac{6}{2-q} \right)^2 - 12 \left( \frac{6}{2-q} \right) - 3$$

$$9 = \frac{36 - 72}{2-q}$$

$$2-q = -4$$

$$q = 6$$

3. C

When the height is maximum,  $t = -\frac{12}{2(-5)} = 1.2$ .

$$\text{Maximum height} = 4 + 12(1.2) - 5(1.2)^2$$

$$= 11.2 \text{ m}$$

4. D

$$y = x^2 - 2ax + 8$$

$$= (x-a)^2 + 8 - a^2$$

So,  $a = 3$  and  $k = 8 - a^2 = -1$ .

5. D

When  $y$  is maximum,  $x = -\frac{5}{2(1)} = -\frac{5}{2}$ .

$$-\frac{7}{4} = \left( -\frac{5}{2} \right)^2 + 5 \left( -\frac{5}{2} \right) + k$$

$$k = \frac{9}{2}$$

6. D

$x^2 - 2x + 10 = (x-1)^2 + 9$ . The minimum value is 9 when  $x = 1$ .

By considering the shape of the curve  $y = x^2 - 2x + 10$ , the greatest value must occur at either ends.

When  $x = -2$ ,  $x^2 - 2x + 10 = 18$ ; when  $x = 3$ ,  $x^2 - 2x + 10 = 13$ .

So, the maximum value is 18.

7.  D

When  $T$  attains its minimum,  $x = -\frac{-3}{2\left(\frac{1}{8}\right)} = 12$

Required time is 12 minutes after adding the cubes.

8.  B

$f(x)$  attains minimum when  $x = -\frac{(-3)}{2(4)} = \frac{3}{8}$ .

9.  B

- A. ✗. Linear graph has no maximum point.
- B. ✓. The graph opens downwards.
- C. ✗. Linear graph has no maximum point.
- D. ✗. The graph opens upwards.

10.  B

$x$ -intercepts are  $-1$  and  $3$ . The equation is in the form  $y = a(x + 1)(x - 3)$ .

$$6 = a(0 + 1)(0 - 3)$$

$$a = -2$$

$$y = -2(x + 1)(x - 3) = -2x^2 + 4x + 6.$$

$x$ -coordinate of vertex =  $-\frac{4}{2(-2)} = 1$ , and  $y$ -coordinate of vertex =  $-2(1)^2 + 4(1) + 6 = 8$ .

$$\text{Maximum area} = \frac{(3 + 1)(8)}{2} = 16.$$

11.  A

$$C = \frac{1}{4}v^2 + \left(\frac{1}{2}v - 50\right)^2$$

$$= \frac{1}{2}v^2 - 50v + 2500$$

$$= \frac{1}{2}(v - 50)^2 + 1250$$

Minimum cost = \$1250.

12.  D

Rewrite the equation as  $4x^2 + kx + (k - 3) = 0$ .

$$\Delta = k^2 - 4(4)(k - 3) = 0$$

$$k^2 - 16k + 48 = 0$$

$$k = 4 \text{ or } 12$$

When  $k = 4$ ,  $x = -\frac{1}{2}$ ; when  $k = 12$ ,  $x = -\frac{3}{2}$ .

13. B

When  $f(x)$  attains its maximum,  $x = -\frac{4}{2(-2)} = 1$

Maximum value  $= -2(1)^2 + 4(1) - 1$

$$= 1$$

14. D

$$\text{Area of } \triangle ABC = \frac{(6-x)(3x+2)}{2}$$

$$= -\frac{3x^2}{2} + 8x + 6$$

$$\text{Required value} = -\frac{8}{2\left(-\frac{3}{2}\right)}$$

$$= \frac{8}{3}$$

15. C

I. ✓.

II. ✓.

III. ✗. Axis of symmetry is  $x = 3$ .

16. D

$$f(x) = x^2 + 10x + 8 = (x + 5)^2 - 17$$

I. ✗. Should be  $x = -5$  instead.

II. ✗.  $f(3+x^2) = (8+x^2)^2 - 17$ .

Since  $x^2 + 8 \geq 8$ , minimum value is  $8^2 - 17 = 47$ .

17. C

$$x\text{-coordinate of vertex} = -\frac{4}{2(-2)} = 1.$$

$$f(1) = k + 4 - 2 = 7$$

$$k = 5$$

18. D

$A(2, 0)$  and  $B(4, 0)$ .

$$x\text{-coordinate of } C = \frac{2+4}{2} = 3$$

When  $x = 3$ ,  $y = -(3-2)(3-4) = 1$ .

$$\text{Required area} = \frac{(4-2)(1)}{2} = 1 \text{ sq. units}$$

19. D

When  $y$  attains its maximum,  $x = -\frac{c}{2(-1)} = \frac{c}{2}$ .

$$7 = -\left(\frac{c}{2}\right)^2 + c\left(\frac{c}{2}\right) + 3$$

$$4 = \frac{c^2}{4}$$

$$c = \pm 4$$

20. C

When  $P$  attains its maximum,  $x = -\frac{1200}{2(-3)} = 200$ .

$$\begin{aligned}\text{Required profit} &= -3(-200)^2 + 1200(200) - 50\,000 \\ &= \$70\,000\end{aligned}$$

21. (a)  $3x^2 - 12x + 14 = 3[x^2 - 2(2)(x) + 2^2] + 2$  1M+1A  
 $= 3(x - 2)^2 + 2$

Thus,  $a = -2$  and  $b = 2$ . 1A

(b)  $\frac{6}{3x^2 - 12x + 14} = \frac{6}{3(x - 2)^2 + 2}$   
The function has a maximum value  $\frac{6}{2} = 3$  when  $x = 2$ . 1M  
The claim is disagreed. 1A

22. (a) Number of cups sold =  $400 - 20x$  1A

Total income = \$  $[(30 + x)(400 - 20x)]$   
 $= \$[-20x^2 - 200x + 12000]$  1A

(b)  $y = (-20x^2 - 200x + 12000) - 20(400 - 20x)$  1M  
 $= -20x^2 + 200x + 4000$  1A

(c)  $y = -20x^2 + 200x + 4000$   
 $= -20[x^2 - 2(5)(x) + 5^2] + 4500$  1M  
 $= -20(x - 5)^2 + 4500$  1M

Thus, the maximum profit is \$4500. 1A

23. (a)  $A = w(100 - 2w)$  1M  
 $= -2w^2 + 100w$  1A

(b) When  $w = 20$ ,  $A = 1200$ .  
Thus, the required area is  $1200 \text{ m}^2$ . 1A

(c) When  $A = 912$ ,  
 $912 = -2w^2 + 100w$  1M  
 $0 = -2w^2 + 100w - 912$   
 $x = 12 \text{ or } 38$

Thus, the required width is 12 m or 38 m. 1A

(d)  $A = -2w^2 + 100w$   
 $= -2[w^2 - 2(25)(w) + 25^2] + 1250$  1M  
 $= -2(w - 25)^2 + 1250$  1M

Thus, the maximum area of the piece of land is  $1250 \text{ m}^2$ . 1A

24. (a)  $2x^2 - 9x - 5 = 0$

$$x = 5 \quad \text{or} \quad -\frac{1}{2}$$

$$g(5) = m - 2(5)^2 = 0$$

$$m = 50$$

1M

1A

(b)  $f(x) = 2x^2 - 9x - 5$

$$= 2 \left[ x^2 - 2 \left( \frac{9}{4} \right) x + \left( \frac{9}{4} \right)^2 \right] - \frac{121}{8}$$

$$= 2 \left( x - \frac{9}{4} \right)^2 - \frac{121}{8}$$

1M

1A

(c) The graph of  $y = g(x)$  is first reflected about the  $x$ -axis

then is translated  $\frac{279}{8}$  units upwards and  $\frac{9}{4}$  units rightwards.

1A

1A+1A

**Alternative solution**

The graph of  $y = g(x)$  is first translated  $\frac{279}{8}$  units downwards and  $\frac{9}{4}$  units rightwards.

1A+1A

then is reflected about the  $x$ -axis.

1A

25. (a)  $f(x) = ax^2 + 8a^2x + 16a^3 + a$

$$= a(x^2 + 8ax + 16a^2) + a$$

$$= a(x + 4a)^2 + a$$

1M

The coordinates of vertex are  $(-4a, a)$ .

1A

(b) (i) The graph of  $y = f(x)$  is translated rightwards by  $5a$  units

1A

and then enlarged along the  $y$ -axis to 4 times the original

1A

to become the graph of  $y = g(x)$ .

(ii)  $(a, 4a)$

1A

(iii)  $P(-4a, a)$  and  $Q(a, 4a)$

$$\begin{aligned} (\text{Slope of } OP) \times (\text{slope of } OQ) &= \frac{a - 0}{-4a - 0} \times \frac{4a - 0}{a - 0} \\ &= -1 \end{aligned}$$

1M

So,  $\angle POQ = 90^\circ$  and the orthocentre is at  $O$ .

1M

Thus, the coordinates of orthocentre are  $(0, 0)$ .

1A