

Dexter Wong & His Mathematics Team
Summer Course 2022 – 2023
MATHEMATICS Compulsory Part
S5 – S6 Core Assignment Set 2

Name: _____

Telephone: _____

Student number: _____

Centre: _____

Lesson date: SUN/MON/TUE/WED/THU/FRI/SAT

INSTRUCTIONS

1. Attempt ALL questions in this paper. Write your answers in the spaces provided in this Question-Answer Book.
2. Unless otherwise specified, all workings (except for multiple choice questions) must be clearly shown.
3. Unless otherwise specified, numerical answers should be either exact or correct to 3 significant figures.
4. The diagrams in this paper are not necessarily drawn in scale.

Suggested solution

Distributed in summer course
S5 – S6 Core
Phase 1 – Lesson 3

1. B

Since OA is horizontal, the altitude through B is $x = 20$.

The coordinates of the orthocentre H are $(20, 4k - 5)$.

Since $OH \perp AB$,

$$\frac{4k - 5}{20} \times \frac{2k - 0}{20 - 25} = -1$$
$$8k^2 - 10k - 100 = 0$$

$$\text{Required sum} = \text{sum of roots} = \frac{10}{8} = \frac{5}{4}$$

2. D

The straight line $5x + 2y = 2b$ passes through $B(0, b)$.

Slope of straight line $5x + 2y = 2b$ is $-\frac{5}{2}$, and the inclination is around 112° .

Denote the angle between the line $5x + 2y = 2b$ and the y -axis by θ . We have $\theta \approx 21.8^\circ$.

$$\angle OBA = 2\theta \approx 43.6^\circ \text{ and } \tan(2\theta) = \frac{a}{b} = \frac{20}{21}.$$

So, $a : b = 20 : 21$.

3. B

The coordinates of the vertices of the triangle are $(0, 0)$, $(6, 0)$ and $(0, 8)$.

Let the radius of inscribed circle be r .

By considering the area of the triangle,

$$\frac{(6)(8)}{2} = \frac{(6)(r)}{2} + \frac{(8)(r)}{2} + \frac{(\sqrt{6^2 + 8^2})(r)}{2}$$
$$r = 2$$

The coordinates of the incentre are $(2, 2)$.

4. B

Circumcentre lies on the perpendicular bisector of $AC \Rightarrow$ it lies on $x = \frac{2 + (-4)}{2} = -1$

Let the coordinates of circumcentre be $(-1, k)$.

$$\sqrt{(-1 - 7)^2 + (k - 5)^2} = \sqrt{(-1 - 2)^2 + (k + 6)^2}$$

$$k^2 - 10k + 89 = k^2 + 12k + 45$$

$$k = 2$$

5. D

$$OE = \sqrt{8^2 + 15^2} = 17 \text{ and } EF = \sqrt{20^2 + 15^2} = 25$$

Let the radius of inscribed circle be r . Consider the area of $\triangle OEF$,

$$\frac{(28-0)(15)}{2} = \frac{17r}{2} + \frac{25r}{2} + \frac{28r}{2}$$

$$r = 6$$

y -coordinate of G is 6. Let the x -coordinate of G be g .

$$\tan \angle FOE = \text{slope of } OE \Rightarrow \angle FOE = \tan^{-1} \frac{15}{8}$$

$$\begin{aligned} \text{Slope of } OG &= \frac{6}{g} = \tan \frac{\angle FOE}{2} \\ &= \frac{3}{5} \quad (\text{by calculator}) \\ g &= 10 \end{aligned}$$

I. ✓.

II. ✓.

III. ✓. $m = \frac{6-0}{10-28} = -\frac{1}{3}$ and $n = \frac{15-0}{8-28} = -\frac{3}{4}$

$$\frac{2m}{1-m^2} = -\frac{3}{4} = n$$

6. C

The straight line $x - 2y + 10 = 0$ is perpendicular to the straight line $2x + y + a = 0$.

The triangle formed is a right-angled triangle. The orthocentre lies at the right-angled vertex.

When $x = -6$,

$$(-6) - 2y + 10 = 0$$

$$y = 2$$

Substitute $(-6, 2)$ into $2x + y + a = 0$,

$$2(-6) + (2) + a = 0$$

$$a = 10$$

7. D

$$x\text{-coordinate of vertex} = \frac{-k}{2(1)} = -\frac{k}{2}$$

$$\text{Midpoint of } PR = \left(-\frac{k}{2}, 0\right)$$

Consider the x -coordinate of centroid,

$$-2 = \frac{0(1) + \left(-\frac{k}{2}\right)(2)}{1+2}$$

$$k = 6$$

8. B

$\triangle OAB$ is a right-angled triangle. So, orthocentre of $\triangle OAB$ is at point O .

$$\text{Area of } \triangle OAB = \frac{1}{2}(12)(16) = 96.$$

$AB = \sqrt{12^2 + 16^2} = 20$. Let the required distance be d . By considering the area of $\triangle OAB$,

$$\frac{1}{2}(AB)(d) = 96$$

$$d = 9.6$$

9. B

$$\sqrt{(-4+9)^2 + (2+2)^2} = \sqrt{(-4-0)^2 + (k-2)^2}$$

$$(k-2)^2 = 25$$

$$k = -3 \quad \text{or} \quad 7$$

10. B

$$OB = \sqrt{3^2 + 4^2} = 5 = OA$$

Since $\triangle OAB$ is an isosceles triangle, the perpendicular bisector of AB passes through circumcentre and O .

Slope of $AB = \frac{4-0}{3+5} = \frac{1}{2}$ and slope of perpendicular bisector = -2 .

$$-2 = \frac{k-0}{h-0}$$

$$h = -\frac{k}{2}$$

11. B

Altitude through P is the x -axis.

The coordinates of the orthocentre H are $(6, 0)$.

Let the coordinates of R be $(0, r)$. Since $RH \perp PQ$,

$$\frac{0-r}{6-0} \times \frac{-3}{4} = -1$$

$$r = -8$$

The coordinates of R are $(0, -8)$.

12. D

$$\text{y-coordinate of circumcentre} = \frac{(-2) + (8)}{2} = 3$$

Let the coordinates of the circumcentre be $(h, 3)$.

$$\sqrt{(h-2)^2 + (3-8)^2} = \sqrt{(h-10)^2 + (14-3)^2}$$

$$h^2 - 4h + 29 = h^2 - 20h + 221$$

$$16h = 192$$

$$h = 12$$

x -coordinate of the circumcentre is 12.

13. A

Since AB is parallel to the y -axis, altitude through O is parallel to the x -axis.

Let the coordinates of orthocentre H be $(x, 0)$. Since $AH \perp OB$,

$$\frac{12-0}{16-x} \times \frac{-12-0}{16-0} = -1$$

$$x = 7$$

14. D

Note that the altitude passing through B is horizontal.

The y -coordinate of the orthocentre is 0.

Let the coordinates of the orthocentre H be $(h, 0)$.

Since $CH \perp AB$,

$$\frac{6-0}{0-h} \times \frac{0+2}{2-0} = -1$$

$$h = 6$$

x -coordinate of the orthocentre is 6.

15. A

Let the radius of the inscribed circle be r .

$$\frac{(9)(12)}{2} = \frac{9r}{2} + \frac{12r}{2} + \frac{\sqrt{9^2 + 12^2}r}{2}$$
$$r = 3$$

Required coordinates are $(3, 3)$.

16. C

Denote the in-centre of $\triangle OAB$ by I .

$$\text{Slope of } AI = \frac{1-0}{1-3} = -\frac{1}{2}$$

$$-\tan \angle OAI = -\frac{1}{2}$$

$$\angle OAI = \tan^{-1} \frac{1}{2}$$

$$\tan \angle OAB = \tan(2\angle OAI) = \frac{4}{3} \quad (\text{by calculator})$$

$$\frac{OB}{OA} = \tan \angle OAB$$

$$\frac{OB}{3} = \frac{4}{3}$$

$$OB = 4$$

Required y -coordinate is 4.

17. C

Let the centre of circle be O .

BO is a median of $\triangle ABC$. So, BEO is a straight line.

$$\angle BAC = \angle ABE = 27^\circ$$

$$\angle CBD = \angle BAC = 27^\circ$$

$$\angle ABC = 90^\circ$$

In $\triangle ABD$,

$$x + 27^\circ + (90^\circ + 27^\circ) = 180^\circ$$

$$x = 36^\circ$$

18. D

Let $H(h, k)$ be the orthocentre.

$$AH \perp BC \quad \text{and}$$

$$\frac{k+19}{h+38} \times \frac{9+1}{-10+2} = -1$$
$$\frac{k+19}{h+38} = \frac{4}{5}$$

$$BH \perp AC$$

$$\frac{k-9}{h+10} \times \frac{-1+19}{-2+38} = -1$$
$$\frac{k-9}{h+10} = -2$$

Solving, we have $h = -8$ and $k = 5$.

19. C

RT is the angle bisector of $\angle SRP$. So, $\angle SRP = 24^\circ$.

$$\angle QPS = \angle QSR.$$

$$\angle QPS + (\angle QSR + 70^\circ) + 24^\circ = 180^\circ$$

$$\angle QPS = 43^\circ$$

20. A

$$P\left(\frac{k}{2}, 0\right), Q(0, -k) \text{ and } R(0, k).$$

Circumcentre lies on perpendicular bisector of QR , i.e., the x -axis.

Circumcentre is at $(-3, 0)$.

$$\frac{k}{2} - (-3) = \sqrt{3^2 + k^2}$$

$$0 = \frac{3k^2}{4} - 3k$$

$$k = 4 \quad \text{or} \quad 0$$

y -coordinate of $R = 4$

21. (a) k

1A

(b) (i) Note that $OH \perp PQ$.

$$\frac{k-0}{h-0} \times \frac{k-60}{96-0} = -1$$

$$k^2 - 60k + 96h = 0$$

1

$$(ii) h = -\frac{1}{96}k^2 + \frac{5}{8}k$$

$$= -\frac{1}{96} [k^2 - 2(30)k + (30)^2] + \frac{75}{8}$$

$$= -\frac{1}{96}(k-30)^2 + \frac{75}{8}$$

Required value is $\frac{75}{8}$.

1M

1A

Alternative solution

$$\Delta = 60^2 - 4(1)(96h) \geq 0$$

(1M)

$$h \leq \frac{75}{8}$$

Required value is $\frac{75}{8}$.

(1A)

$$22. (a) a = \frac{(PQ)r}{2} + \frac{(QR)r}{2} + \frac{(PR)r}{2}$$

$$= \frac{r}{2}(PQ + QR + PR)$$

$$= \frac{pr}{2}$$

1M

1

$$(b) AB = \sqrt{(9-2)^2 + (18+6)^2} = 25, BC = \sqrt{32^2 + 24^2} = 40 \text{ and } AC = 39.$$

Let the radius of the inscribed circle of $\triangle ABC$ be r .

$$\frac{(41-2)(18+6)}{2} = \frac{(25+40+39)r}{2}$$

1M

$$r = 9$$

1A

$$\text{Required } y\text{-coordinate} = -6 + 9 = 3$$

1A

23. (a) $\angle OMQ = 90^\circ = \angle ONQ$ (given)
 $AB = CD$ (given)
 $OM = ON$ (equal chords, equidistant from centre)
 $OQ = OQ$ (common side)
 $\triangle QNO \cong \triangle QMO$ (RHS)

Marking Scheme

Case 1	Any correct proof with correct reasons.	2
Case 2	Any correct proof without reasons.	1

(b) (i) $OT = ON = 130$
 $OQ = \sqrt{312^2 + 130^2} = 338$ and $OT : OQ = 130 : 338 = 5 : 13$
x-coordinate of $T = 312 \times \left(-\frac{5}{13}\right) = -120$ 1M
y-coordinate of $T = -130 \times \left(-\frac{5}{13}\right) = 50$
The coordinates of T are $(-120, 50)$. 1A
Let the coordinates of R be $(h, -130)$ such that $QR \perp ON$.

$$\frac{-130 - 50}{h + 120} \times \frac{50 - 0}{-120 - 0} = -1$$
 1M

$$h = -195$$

Let the coordinates of P be (a, b) . Note that P is the midpoint of PR .

$$\frac{a + (-195)}{2} = -120 \quad \text{and} \quad \frac{b + (-130)}{2} = 50$$
 1M

$$a = -45 \quad b = 230$$

The coordinates of P are $(-45, 230)$. 1A
(ii) $OP = \sqrt{45^2 + 230^2} = \sqrt{54925} \neq OQ$ 1M
Thus, O is not the circumcentre of $\triangle PQR$.
The claim is disagreed. 1A

24. (a) $PB = PD$ and $\angle PBD = \frac{180^\circ - x}{2} = 90^\circ - \frac{x}{2}$ 1M
 $\angle BAD = \angle PBD = 90^\circ - \frac{x}{2}$ 1A
 $\angle ABC = 90^\circ$
 $\angle AQB = 180^\circ - 90^\circ - \left(90^\circ - \frac{x}{2}\right) = \frac{x}{2}$ 1A

(b) (i) Since $PB = PD = PR$, we have $\angle BRD = \angle PDR$. 1M

$$\angle BRD + \angle PDR = x$$

$$\angle BRD = \frac{x}{2}$$
 1A

(ii) Note that $\angle BRD = \angle BQD = \frac{x}{2}$. 1M

B, D, Q, R are concyclic. 1M

Since $PB = PD = PR$, P is the centre of the circle BDR ,
and hence is the centre of the circle $BDQR$.

Thus, P is the centre of the circumcircle of $\triangle BDQ$.

The claim is agreed. 1A

25. (a) $CE \perp AB$ (property of orthocentre)

$BD \perp AC$ (property of orthocentre)

$$\angle BEC = \angle BDC = 90^\circ$$

Thus, $BCDE$ is a cyclic quadrilateral. (converse of $\angle s$ in the same segment)

Marking Scheme

Case 1 Any correct proof with correct reasons. 2

Case 2 Any correct proof without reasons. 1

(b) (i) Coordinates of centre = $\left(\frac{-6+14}{2}, \frac{-6-6}{2}\right) = (4, -6)$ 1A
The equation of the circle is

$$(x - 4)^2 + (y + 6)^2 = (0 - 4)^2 + (8 + 6)^2$$
 1M

$$(x - 4)^2 + (y + 6)^2 = 100$$
 1A

(ii) Distance between A and centre = $\sqrt{4^2 + (-6 - 8)^2} = \sqrt{212}$

Radius of circle = 10

Angle between two tangents = $2 \times \tan^{-1} \frac{10}{\sqrt{212}} \approx 86.8^\circ \neq 90^\circ$ 1M+1A

The claim is not agreed. 1A

26. (a) AD is the perpendicular bisector of BC . The coordinates of D are $(-8, -6)$. 1A

Since D is the midpoint of BC , the coordinates of C are $(-8, -16)$. 1A

Midpoint of $AC = (1, -11)$ and slope of $AC = \frac{-6 + 16}{10 + 8} = \frac{5}{9}$ 1A

Required equation is

$$y + 11 = -\frac{9}{5}(x - 1) \quad 1M$$

$$9x + 5y + 46 = 0 \quad 1A$$

(b) Since AD is perpendicular bisector of BC , y -coordinate of circumcentre = -6 . 1M

Put $y = -6$ into $9x + 5y + 46 = 0$, we have $x = -\frac{16}{9}$.

Required coordinates are $\left(-\frac{16}{9}, -6\right)$. 1A

(c) Required equation is

$$\left(x + \frac{16}{9}\right)^2 + (y + 6)^2 = \left(10 + \frac{16}{9}\right)^2 + (-6 + 6)^2 \quad 1M$$

$$\left(x + \frac{16}{9}\right)^2 + (y + 6)^2 = \frac{11236}{81} \quad 1A$$

(d) (i) Locus of P is a parabola (opens rightwards). 1A

(ii) Let the coordinates of P be (x, y) .

$$\sqrt{(x - 10)^2 + (y + 6)^2} = \sqrt{(x + 8)^2} \quad 1M$$

$$y^2 - 36x + 12y + 72 = 0$$

Required equation is $y^2 - 36x + 12y + 72 = 0$. 1A

27. (a) Let $x = \angle BAI$ and $y = \angle ABI$.

$$\begin{aligned}
 \angle PAC &= \angle BAI = x && (\text{property of incentre}) \\
 PB &= PC && (\text{equal } \angle s, \text{ equal chords}) \\
 \angle PIB &= \angle ABI + \angle BAI && (\text{ext. } \angle \text{ of } \triangle) \\
 &= x + y \\
 \angle IBC &= \angle ABI = y && (\text{property of incentre}) \\
 \angle PBC &= \angle PAC = x && (\angle s \text{ in the same segment}) \\
 \angle IBP &= x + y \\
 &= \angle PIB \\
 PB &= PI && (\text{sides opp. equal } \angle s)
 \end{aligned}$$

Thus, $PB = PI = PC$.

Marking Scheme

Case 1	Any correct proof with correct reasons.	3
Case 2	Any correct proof without reasons.	2
Case 3	Incomplete proof with any one correct step with reason.	1

(b) $\angle IAY = \angle PSC$ ($\angle s$ in the same segment)

$$\begin{aligned}
 \angle AYI &= 90^\circ && (\text{given}) \\
 \angle SCP &= 90^\circ && (\angle \text{ in semicircle}) \\
 &= \angle AYI \\
 \triangle IAY &\sim \triangle PSC && (\text{AA})
 \end{aligned}$$

Marking Scheme

Case 1	Any correct proof with correct reasons.	3
Case 2	Any correct proof without reasons.	2
Case 3	Incomplete proof with any one correct step with reason.	1

$$(c) \quad \frac{IY}{PC} = \frac{IA}{PS}$$

$$\frac{r}{IP} = \frac{AI}{2R}$$

$$AI \cdot IP = 2Rr$$

1M

The claim is agreed. 1A

(d) Let the equation of circle BPC be $x^2 + y^2 + Dx + Ey + F = 0$, where D, E and F are constants.

$$\begin{cases} (-16)^2 - 16D + F = 0 \\ (-8)^2 - 8E + F = 0 \\ 16^2 + 16D + F = 0 \end{cases}$$

1M

Solving, we have $D = 0, E = -24$ and $F = -256$.

Radius of the circumcircle = $\sqrt{0^2 + 12^2 + 256} = 20$ 1A

$$BP = \sqrt{16^2 + 8^2} = 8\sqrt{5}$$

$$\text{By (c), } AI = \frac{2Rr}{IP} = \frac{2(20)(9)}{8\sqrt{5}} = 9\sqrt{5}$$

1A

1A

1A