

Dexter Wong & His Mathematics Team  
Summer Course 2022 – 2023  
MATHEMATICS Compulsory Part  
S5 – S6 Core Assignment Set 1

Name: \_\_\_\_\_

Telephone: \_\_\_\_\_

Student number: \_\_\_\_\_

Centre: \_\_\_\_\_

Lesson date: SUN/MON/TUE/WED/THU/FRI/SAT

#### **INSTRUCTIONS**

1. Attempt ALL questions in this paper. Write your answers in the spaces provided in this Question-Answer Book.
2. Unless otherwise specified, all workings (except for multiple choice questions) must be clearly shown.
3. Unless otherwise specified, numerical answers should be either exact or correct to 3 significant figures.
4. The diagrams in this paper are not necessarily drawn in scale.

#### **Suggested solution**



Distributed in summer course  
S5 – S6 Core  
Phase 1 – Lesson 1

1.  A

Reduce the graph of  $y = \sin x$  along the  $x$ -axis to  $\frac{1}{2}$  times the original.

Then reduce along  $y$ -axis to  $\frac{1}{3}$  times the original to get the graph shown.

$$\begin{aligned}\text{Coordinates of } T &= \left( \frac{1}{2} \times 270^\circ, \frac{1}{3} \times (-1) \right) \\ &= \left( 135^\circ, -\frac{1}{3} \right)\end{aligned}$$

2.  C

Enlarge to 3 times of the original along the  $x$ -axis:

$$y = \tan x \longrightarrow y = \tan \frac{x}{3}$$

Reduce to  $\frac{1}{2}$  times the original along the  $y$ -axis:

$$y = \tan \frac{x}{3} \longrightarrow y = \frac{1}{2} \tan \frac{x}{3}$$

3.  B

$$y = f(x) \longrightarrow y = f(-x) \longrightarrow y = f(-2x)$$

Reflect about  $y$ -axis.

Reduce along  $x$ -axis to  $\frac{1}{2}$  times the original.

The answer is B.

4.  A

The graph of exponential curve was translated  $b$  units upwards. So,  $b > 0$ . Exponential graph is increasing if the base is greater than 1. So,  $a^{-1} > 1$  and therefore  $0 < a < 1$ .

5.  B

I. ✓. The graph  $y = f(x - 2)$  is 2 units on the right of  $y = f(x)$ , which can possibly be  $y = g(x)$ .

II. ✓. The graph  $y = f(-x + 2)$  is obtained by translating the graph  $y = f(x)$  2 units to the left [to  $y = f(x + 2)$ ]

and then reflect with respect to the  $y$ -axis, which is also possible.

III. ✗. The graph  $y = f(-x - 2)$  is obtained by translating the graph  $y = f(x)$  2 units to the right [to  $y = f(x - 2)$ ]

and then reflect with respect to the  $y$ -axis. The vertex should lie on the left of the  $y$ -axis.

6.  D

$$y\text{-intercept} = 0.5^{0-1} + 1 = 2 + 1 = 3$$

When  $x$  is large,  $0.5^{x-1}$  is close to 0, and so the value of  $y$  is close to 1.

Only option D satisfies these.

7.  B

From  $y = f(x)$ ,  
reflect about  $x$ -axis  $\rightarrow y = -f(x)$   
translate leftwards by 2 units  $\rightarrow y = -f(x + 2)$

8.  C

From  $y = f(x)$  to  $y = g(x)$ :  
Translate leftwards by 4 units and downwards by 3 units.  
So,  $g(x) = f(x + 4) - 3$

9.  B

$$y = \frac{4}{x} \longrightarrow y = \frac{4}{x+4}$$

I. ✓.

II. ✗. When  $x = -3.5$ ,  $y = \frac{4}{-3.5+4} = 8$

III. ✓. When  $x = 0$ ,  $y = \frac{4}{4} = 1$ , only one  $y$ -intercept.

10.  A

Note that  $f(2) = f(5) = 0$ .

A. ✓.

B. ✗. When  $x = -1$ ,  $y = f(1 - 1) = f(0) \neq 0$ .

C. ✗. When  $x = -1$ ,  $y = -f(-1) - 1 \neq 0$ .

D. ✗. When  $x = -1$ ,  $y = -f(-1) + 1 \neq 0$ .

11.  C

$$g(x) = -\frac{1}{2}f(x)$$

The graph of  $y = f(x)$  is reduced along the  $y$ -axis to  $\frac{1}{2}$  times the original and then is reflected about the  $x$ -axis to the graph of  $y = g(x)$ .

The answer is C.

12.  A

$$y = f(x) \longrightarrow y = -f(x) \longrightarrow y = -f(x) + 1$$

The new graph is obtained by

- reflect the graph about the  $x$ -axis,
- translate upwards by 1 unit.

The answer is A.

13. B

$y = f(x) \rightarrow y = f(-x)$ : reflect about  $y$ -axis

$y = f(-x) \rightarrow y = f(-x) - 5$ : translate downwards by 5 units

14. B

The graph passes through  $(0, 1)$  and  $(90, 0)$ .

The answer is B.

15. A

From  $y = f(x)$  to  $y = f(2x + 1)$ :

Translate 1 unit leftwards  $\rightarrow$  reduce along  $x$ -axis to  $\frac{1}{2}$  the original  $\Rightarrow$  Option A

**Alternative transformation:**

Reduce along  $x$ -axis to  $\frac{1}{2}$  the original  $\rightarrow$  translate  $\frac{1}{2}$  units leftwards  $\Rightarrow$  Option A

**Alternative solution:**

Note that  $f(0) = f(5) = 0$ .

$$g\left(-\frac{1}{2}\right) = f\left[2\left(-\frac{1}{2}\right) + 1\right] = f(0) = 0 \text{ and } g(2) = f[2(2) + 1] = f(5) = 0.$$

The graph of  $y = g(x)$  has  $x$ -intercepts  $-\frac{1}{2}$  and 5  $\Rightarrow$  Option A.

16. B

2 units upwards  $\Rightarrow y = \log x + 2$

Enlarged along  $y$ -axis to 3 times the original  $\Rightarrow y = 3(\log x + 2) = 3 \log x + 6$

17. C

$$y = f(x) \longrightarrow y = -f(x) \longrightarrow y = -f(x - 2)$$

Reflect about the  $x$ -axis. Translate rightwards by 2 units.

The answer is C.

18. A

The graph  $y = -f(x - 1)$  is obtained by

translating the graph of  $y = f(x)$  rightwards by 1 unit;

reflect the resulting graph with respect to the  $x$ -axis.

Only option A satisfies this.

19. D

Let  $f(x) = (x - h)^2 + k$ . The resulting graph is

$$y = -f(x - h)$$

$$= -(x - 2h)^2 - k$$

20. B

Draw the line  $x = 1$  and  $y = 1$ .

From the graph,  $0 < b < a < 1 < c$ .

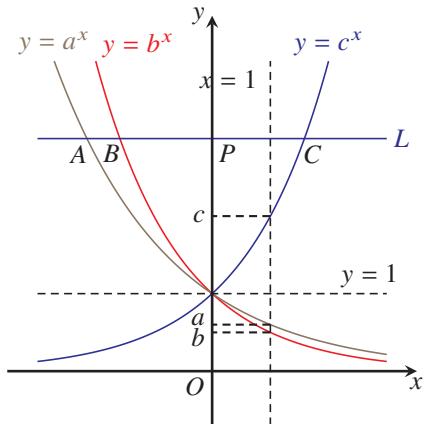
I. ✓. From the graph,  $0 < a < 1$  and  $0 < b < 1$ .

So,  $ab < 1$ .

II. ✗. The graph  $y = b^x$  and  $y = c^x$  is symmetric about the  $y$ -axis. Thus,  $b^{-1} = c$ .

We have  $ac > bc = 1$ .

III. ✓.



21. D

Check the value of  $g(0.5)$ .

A. ✗.  $g(0.5) = f\left(\frac{0.5}{2}\right) - 1 = f(0.25) - 1$

B. ✗.  $g(0.5) = f(1 + 1) = f(2)$

C. ✗.  $g(0.5) = f\left(\frac{0.5}{2} - 1\right) = f(-0.75)$

D. ✓.  $g(0.5) = f(1) - 1 = 0 - 1 = -1$

22. D

We have  $f(3) = 2$  and  $g(3) = 1$ .

A. ✗.  $g(3) = -2f(3) + 2 = -2(2) + 2 = -2 \neq 1$

B. ✗.  $g(3) = -2f(3) + 3 = -2(2) + 3 = -1 \neq 1$

C. ✗.  $g(3) = -\frac{1}{2}f(3) + 3 = -1 + 3 = 2 \neq 1$

D. ✓.  $g(3) = -\frac{1}{2}f(3) + 2 = -1 + 2 = 1$

23. B

I. ✓. When  $x = 0$ ,  $4 = p + q \tan 0^\circ = p$ .

II. ✗.  $y = \tan x^\circ$  is an increasing curve. Since the curve here is also increasing,  $q > 0$ .

III. ✓. When  $x = -\alpha$ ,  $0 = 4 + q \tan (-\alpha)^\circ \Rightarrow \tan \alpha^\circ = \frac{4}{q} > 0$

24.  A

Note that  $f(2) = 1$  corresponds to  $g(5) = -1$ .

- A. ✓.  $g(5) = f(2) - 2 = 1 - 2 = -1$
- B. ✗.  $g(5) = f(2) + 2 = 1 + 2 = 3 \neq -1$
- C. ✗.  $g(5) = f(8) - 2 = ?$
- D. ✗.  $g(5) = f(8) + 2 = ?$

25.  C

It shows the graphs of  $y = f(x)$  and  $y = -f(x - 5)$ .

The graph of  $y = f(x)$  is reflected about the  $x$ -axis and is translated leftwards by 5 units.

26. (a) 
$$\frac{2}{1+i} \times \frac{2}{1-i} = \frac{2}{a}$$
  

$$\frac{4}{1+1} = \frac{2}{a}$$

$$a = 1$$

$$\frac{2}{1+i} + \frac{2}{1-i} = -\frac{b}{1}$$

$$\frac{(2-2i) + (2+2i)}{1+1} = -b$$

$$b = -2$$

(b) Let  $g(x) = f(x) + k = x^2 - 2x + 2 + k$ , where  $k \neq 0$ .

If  $y = g(x)$  has two  $x$ -intercepts, then  $g(x) = 0$  has two distinct real roots and

$$\Delta = 2^2 - 4(1)(2+k) > 0$$

$$-4 - 4k > 0$$

$$k < -1$$

The graph of  $y = g(x)$  is obtained by translating the graph of  $y = f(x)$  downwards by more than 1 unit.

27. (a)  $2x^3 + 3x^2 - 5x - 6 = 0$

$$(x+1)(2x^2 + x - 6) = 0$$

$$(x+1)(x+2)(2x-3) = 0$$

$$x = -1 \quad \text{or} \quad -2 \quad \text{or} \quad \frac{3}{2}$$

The  $x$ -intercepts are  $-1, -2$  and  $\frac{3}{2}$ .

(b)  $g(x) = f\left(\frac{x}{2}\right)$  and  $h(x) = -g(x)$

$$h(x) = -f\left(\frac{x}{2}\right)$$

$$= -\frac{x^3}{4} - \frac{3x^2}{4} + \frac{5x}{2} + 6$$

28. (a)  $h(x) = f(-x+3)$

$$= 2(-x+3)^2 - 8(-x+3) - 10$$

$$= 2x^2 - 4x - 16$$

(b) Let  $f(x) = h(x+c)$ , where  $c$  is a constant.

$$2x^2 - 8x - 10 = 2(x+c)^2 - 4(x+c) - 16$$

Compare coefficient of  $x$ ,

$$-8 = 4c - 4$$

$$c = -1$$

The graph of  $y = h(x)$  is translated to the right by 1 unit to become the graph of  $y = f(x)$ .

29. (a)  $\log_4 y = -\frac{1}{2}x + 3$  1A  
 $y = 4^{-\frac{1}{2}x+3}$  1M

$$= 2^{-x} \cdot 64$$

$$= 64 \left(\frac{1}{2}\right)^x$$

So,  $k = 64$  and  $a = \frac{1}{2}$ . 1A

(b)  $h(x) = 4f(x)$  1A  
 $= 64 \left(\frac{1}{2}\right)^x \cdot \left(\frac{1}{2}\right)^{-2}$   
 $= 64 \left(\frac{1}{2}\right)^{x-2}$   
 $= f(x-2)$

The graph  $y = h(x)$  can be obtained by translating the graph of  $y = f(x)$  2 units rightwards.

The claim is agreed. 1A

30. (a)  $g(x) = f(-x) = (-x - 3)^2 = (x + 3)^2$  1A

(b)  $g(x) = f(x + 6)$ .

The graph can be obtained by translating the graph of  $y = f(x)$  leftwards by 6 units. 1M

The claim is agreed. 1A

(c) Vertex of the graph of  $y = g(x)$  is at  $(-3, -0)$ . 1A

Image of the vertex is at  $\left(-\frac{3}{2}, 0 - 5\right) = \left(-\frac{3}{2}, -5\right)$ .

Thus, coordinates of vertex of the graph of  $y = h(x)$  are  $\left(-\frac{3}{2}, -5\right)$ . 1A

31. (a)  $p(x) = f(x) + 3$  1A

$q(x) = 2f(x)$  1A

$r(x) = -f(x)$  1A

(b)  $f(x) = -2[f(x) + 3] = -2f(x) - 6$  1A

(c) (i)  $y = -2[(x^2 - 2x + 3) + 3]$  1M

$$= -2x^2 + 4x - 12$$

(ii) The graph obtained is

$$\begin{aligned} y &= 2[-(x^2 - 2x + 3)] + 3 \\ &= -2x^2 + 4x - 3 \end{aligned}$$

Hence, the graph obtained is not the same as the graph in (c)(i). 1